Answer:
Ro = 133 [kg/m³]
Explanation:
In order to solve this problem, we must apply the definition of density, which is defined as the relationship between mass and volume.

where:
m = mass [kg]
V = volume [m³]
We will convert the units of length to meters and the mass to kilograms.
L = 15 [cm] = 0.15 [m]
t = 2 [mm] = 0.002 [m]
w = 10 [cm] = 0.1 [m]
Now we can find the volume.
![V = 0.15*0.002*0.1\\V = 0.00003 [m^{3} ]](https://tex.z-dn.net/?f=V%20%3D%200.15%2A0.002%2A0.1%5C%5CV%20%3D%200.00003%20%5Bm%5E%7B3%7D%20%5D)
And the mass m = 4 [gramm] = 0.004 [kg]
![Ro = 0.004/0.00003\\Ro = 133 [kg/m^{3}]](https://tex.z-dn.net/?f=Ro%20%3D%200.004%2F0.00003%5C%5CRo%20%3D%20133%20%5Bkg%2Fm%5E%7B3%7D%5D)
C: if it senses unequal currents
Answer:
A
Explanation:
Begin as protostars, which fire up when they collapse and become denser and hotter.
Answer:
so angular velocity is 7.13128 sec−1
Explanation:
velocity v = 2.2 m/s
displacement s = 220 mm = 0.220 m
distance d = 510 mm = 0.510 m
to find out
angular velocity
solution
we know that
angular velocity will be velocity ( v) / (displacement² + distance²) .....1
now put all these value in equation 1 and we get angular velocity i.e.
angular velocity = velocity ( v) / (displacement² + distance²)
angular velocity = 2.2 / (0.22² + 0.51²)
angular velocity = 2.2 / 0.3085
angular velocity = 7.13128
so angular velocity is 7.13128 sec−1