Pitch
Explanation:
The pitch of a sound wave is the perceived frequency of a sound wave.
The quality of sound that makes it discernible to the ear is the pitch.
- Sound wave is a longitudinal wave that is transmitted by series of rarefaction and compression.
- Pitch helps to distinguish between the different sound qualities.
- Pitch is how high or low sound is perceived.
learn more:
Pitch brainly.com/question/9772227
Sound wave brainly.com/question/2845448
#learnwithBrainly
Answer:
B. normal force
Explanation:
Because there is no frictional or resistance force. However gravitational force is applied downroad from the center of the cup thus the contact force that is perpendicular to the surface that an object contacts which is the normal force exerted upward from the table that prevents an object from falling.
Answer:
r₁/r₂ = 1/2 = 0.5
Explanation:
The resistance of a wire is given by the following formula:
R = ρL/A
where,
R = Resistance of wire
ρ = resistivity of the material of wire
L = Length of wire
A = Cross-sectional area of wire = πr²
r = radius of wire
Therefore,
R = ρL/πr²
<u>FOR WIRE A</u>:
R₁ = ρ₁L₁/πr₁² -------- equation 1
<u>FOR WIRE B</u>:
R₂ = ρ₂L₂/πr₂² -------- equation 2
It is given that resistance of wire A is four times greater than the resistance of wire B.
R₁ = 4 R₂
using values from equation 1 and equation 2:
ρ₁L₁/πr₁² = 4ρ₂L₂/πr₂²
since, the material and length of both wires are same.
ρ₁ = ρ₂ = ρ
L₁ = L₂ = L
Therefore,
ρL/πr₁² = 4ρL/πr₂²
1/r₁² = 4/r₂²
r₁²/r₂² = 1/4
taking square root on both sides:
<u>r₁/r₂ = 1/2 = 0.5</u>
Answer:
W =23807.68 N
Explanation:
given,
surface area of wing = 19.4 m²
speed over top wing = 67 m/s
speed under wing = 51 m/s
density of air = 1.3 kg/m³
weight of plane
From Bernoulli's principle

where 1 and 2 are two different locations at the same geo potential level
so if we call 1 the lower surface and 2 the upper surface,
we find the pressure differential, P₁ -P₂
then the force acting on the plane is
F=P A
F=1227.2 x 19.4
F =23807.68 N
weight of the plane
W =23807.68 N
Answer:
a) k = 2231.40 N/m
b) v = 0.491 m/s
Explanation:
Let k be the spring force constant , x be the compression displacement of the spring and v be the speed of the box.
when the box encounters the spring, all the energy of the box is kinetic energy:
the energy relationship between the box and the spring is given by:
1/2(m)×(v^2) = 1/2(k)×(x^2)
(m)×(v^2) = (k)×(x^2)
a) (m)×(v^2) = (k)×(x^2)
k = [(m)×(v^2)]/(x^2)
k = [(3)×((1.8)^2)]/((6.6×10^-2)^2)
k = 2231.40 N/m
Therefore, the force spring constant is 2231.40 N/m
b) (m)×(v^2) = (k)×(x^2)
v^2 = [(k)(x^2)]/m
v = \sqrt{ [(k)(x^2)]/m}
v = \sqrt{ [(2231.40)((1.8×10^-2)^2)]/(3)}
= 0.491 m/s