Answer:
425-65=360
360-65=295
Mrs Chan had at first 295 cookies
Answer:
x + 2y = -8 = y = -4 - 1/2x
y= -1/2x + 4 = y = 4
y= -1/2x - 4 = y = -4
y=-2x - 4 = y = -4
y=1/2x-4 = y = -4
Step-by-step explanation:
(x + 2y = -8 = y = -4 - 1/2x)

Given:
'a' and 'b' are the intercepts made by a straight-line with the co-
ordinate axes.
3a = b and the line pass through the point (1, 3).
To find:
The equation of the line.
Solution:
The intercept form of a line is
...(i)
where, a is x-intercept and b is y-intercept.
We have, 3a=b.
...(ii)
The line pass through the point (1, 3). So, putting x=1 and y=3, we get



Multiply both sides by a.

The value of a is 2. So, x-intercept is 2.
Putting a=2 in
, we get


The value of b is 6. So, y-intercept is 6.
Putting a=2 and b=6 in (i), we get

Therefore, the equation of the required line in intercept form is
.
Answer:

Step-by-step explanation:
So when you express a linear function in slope-intercept form it's given in the form of y=mx+b, where m is the slope, and b is the y-intercept. This is because as x increases by 1, the y-value will increase by m (because multiplication), and since the slope is defined as rise/run, the rise will be m, and run will be 1, giving you a slope of m/1 or m. The reason b is the y-intercept, is because whenever the linear function crosses the y-axis, the x-value will always be 0. Meaning that mx will be 0 because m * 0 will equal 0... and that leaves b by it self, so b will determine the y-intercept.
So if you look at the graph, the linear function crosses the y-axis as (0, 2) so the value of b will be 2. This gives you the equation y=mx+2.
Now to calculate the slope, we can take any two points and see how much the rise was and how much the run was. It can also be more formally defined in the equation:
. So let's take the points (0, 2) and (8, 8). As you can see the x-value increases by 8 or "ran" by 8, and the y-value increased by 6. So the rise over run in this case is 6/8 which can simplified as 3/4. That is the slope. This gives you the complete equation of: 