Answer:
R = 2216m and The normal force of the seat on the pilot is 5008N
Explanation:
See attachment below please.
For rotational equilibrium of the door we can say that torque due to weight of the door must be counter balanced by the torque of external force

here weight will act at mid point of door so its distance is half of the total distance where force is applied
here we know that

now we will have


so our applied force is 72.5 N
Answer:
The velocity of the ball before it hits the ground is 381.2 m/s
Explanation:
Given;
time taken to reach the ground, t = 38.9 s
The height of fall is given by;
h = ¹/₂gt²
h = ¹/₂(9.8)(38.9)²
h = 7414.73 m
The velocity of the ball before it hits the ground is given as;
v² = u² + 2gh
where;
u is the initial velocity of the on the root = 0
v is the final velocity of the ball before it hits the ground
v² = 2gh
v = √2gh
v = √(2 x 9.8 x 7414.73 )
v = 381.2 m/s
Therefore, the velocity of the ball before it hits the ground is 381.2 m/s
A and B are equivalent. That's one way instruments are often grouped. (the "sopranos", the "altos", the "bass")
C is another way instruments are often grouped; (the "woods", the "brass")
D is another way instruments are often grouped; (the "strings", the "percussions")
A generator converts mechanical energy into electrical energy, while a motor does the opposite - it converts electrical energy into mechanical energy