Answer:
D-Driving the car faster down the road.
Answer:
*******
Explanation:
is obviously the correct answer they are both so different yet so alike
Answer:
16.6 N
Explanation:
m = 0.52 kg, v₀ = 0, v = 8.6 m/s, t = 0.27 s
a = (v - v₀)/t
F = ma = m(v - v₀)/t = 0.52 (8.6 - 0)/0.27 = 16.6 N
<span>3.78 m
Ignoring resistance, the ball will travel upwards until it's velocity is 0 m/s. So we'll first calculate how many seconds that takes.
7.2 m/s / 9.81 m/s^2 = 0.77945 s
The distance traveled is given by the formula d = 1/2 AT^2, so substitute the known value for A and T, giving
d = 1/2 A T^2
d = 1/2 9.81 m/s^2 (0.77945 s)^2
d = 4.905 m/s^2 0.607542 s^2
d = 2.979995 m
So the volleyball will travel 2.979995 meters straight up from the point upon which it was launched. So we need to add the 0.80 meters initial height.
d = 2.979995 m + 0.8 m = 3.779995 m
Rounding to 2 decimal places gives us 3.78 m</span>
Answer:

Explanation:
Assuming the we have to find ratio maximum forces on the mass in each case
we know that in a spring mass system
F= Kx
K= spring constant
x= spring displacement
Case 1:

case 2:

therefore, 
