Answer: 15
Step-by-step explanation: have a great day!
Determine whether the relation is a function. {(−3,−6),(−2,−4),(−1,−2),(0,0),(1,2),(2,4),(3,6)}
Gennadij [26K]
Answer:
The relation is a function.
Step-by-step explanation:
In order for the relation to be a function, every input must only have one output. Basically, you can't have 2 outputs for 1 input but you can have 2 inputs for 1 output. Looking at all of the points in the relation, we see that no input has multiple outputs, so the answer is yes, the relation is a function.
The answer is 0 < x <span>≤ 7
</span>
First, we know that width = x
Which means that length = x +18
So, the possible equation for the Table's area is
X (X + 18) ≤ 175
X^2 + 18x - 175 <span>≤ </span>0
Next, we need to calculate is by using complete square method
x^2 + 18x + 81 <span>≤ 175 + 81
(x + 9)^2 </span><span>≤ 256
|x + 9| </span><span>≤ sqrt(256)
|x + 9| </span><span>≤ +-16
-16 </span>≤ x + 9 <span>≤ 16
</span>-16 - 9 ≤ x <span>≤ 16 - 9
</span>-25 ≤ x <span>≤ 7
Since the width couldn't be negative, we can change -25 with 0,
so it become
</span> 0 < x ≤ 7