Answer:
8 < x < 16
Step-by-step explanation:
Consider an angle slightly less than 180 between the 4 and 12 ft sides. The measure between the 2 end points is slightly less than the total of the two sides. So the greatest length is 16.
Consider an angle slightly more than 0 between the 4 and 12 ft sides. The measure between the 2 end points is slightly more than the difference between the two sides. So the lowest length is 8.
Answer:
Given definite integral as a limit of Riemann sums is:
![\lim_{n \to \infty} \sum^{n} _{i=1}3[\frac{9}{n^{3}}i^{3}+\frac{36}{n^{2}}i^{2}+\frac{97}{2n}i+22]](https://tex.z-dn.net/?f=%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%5Csum%5E%7Bn%7D%20_%7Bi%3D1%7D3%5B%5Cfrac%7B9%7D%7Bn%5E%7B3%7D%7Di%5E%7B3%7D%2B%5Cfrac%7B36%7D%7Bn%5E%7B2%7D%7Di%5E%7B2%7D%2B%5Cfrac%7B97%7D%7B2n%7Di%2B22%5D)
Step-by-step explanation:
Given definite integral is:

Substituting (2) in above
![f(x_{i})=\frac{1}{2}(4+\frac{3}{n}i)+(4+\frac{3}{n}i)^{3}\\\\f(x_{i})=(2+\frac{3}{2n}i)+(64+\frac{27}{n^{3}}i^{3}+3(16)\frac{3}{n}i+3(4)\frac{9}{n^{2}}i^{2})\\\\f(x_{i})=\frac{27}{n^{3}}i^{3}+\frac{108}{n^{2}}i^{2}+\frac{3}{2n}i+\frac{144}{n}i+66\\\\f(x_{i})=\frac{27}{n^{3}}i^{3}+\frac{108}{n^{2}}i^{2}+\frac{291}{2n}i+66\\\\f(x_{i})=3[\frac{9}{n^{3}}i^{3}+\frac{36}{n^{2}}i^{2}+\frac{97}{2n}i+22]](https://tex.z-dn.net/?f=f%28x_%7Bi%7D%29%3D%5Cfrac%7B1%7D%7B2%7D%284%2B%5Cfrac%7B3%7D%7Bn%7Di%29%2B%284%2B%5Cfrac%7B3%7D%7Bn%7Di%29%5E%7B3%7D%5C%5C%5C%5Cf%28x_%7Bi%7D%29%3D%282%2B%5Cfrac%7B3%7D%7B2n%7Di%29%2B%2864%2B%5Cfrac%7B27%7D%7Bn%5E%7B3%7D%7Di%5E%7B3%7D%2B3%2816%29%5Cfrac%7B3%7D%7Bn%7Di%2B3%284%29%5Cfrac%7B9%7D%7Bn%5E%7B2%7D%7Di%5E%7B2%7D%29%5C%5C%5C%5Cf%28x_%7Bi%7D%29%3D%5Cfrac%7B27%7D%7Bn%5E%7B3%7D%7Di%5E%7B3%7D%2B%5Cfrac%7B108%7D%7Bn%5E%7B2%7D%7Di%5E%7B2%7D%2B%5Cfrac%7B3%7D%7B2n%7Di%2B%5Cfrac%7B144%7D%7Bn%7Di%2B66%5C%5C%5C%5Cf%28x_%7Bi%7D%29%3D%5Cfrac%7B27%7D%7Bn%5E%7B3%7D%7Di%5E%7B3%7D%2B%5Cfrac%7B108%7D%7Bn%5E%7B2%7D%7Di%5E%7B2%7D%2B%5Cfrac%7B291%7D%7B2n%7Di%2B66%5C%5C%5C%5Cf%28x_%7Bi%7D%29%3D3%5B%5Cfrac%7B9%7D%7Bn%5E%7B3%7D%7Di%5E%7B3%7D%2B%5Cfrac%7B36%7D%7Bn%5E%7B2%7D%7Di%5E%7B2%7D%2B%5Cfrac%7B97%7D%7B2n%7Di%2B22%5D)
Riemann sum is:
![= \lim_{n \to \infty} \sum^{n} _{i=1}3[\frac{9}{n^{3}}i^{3}+\frac{36}{n^{2}}i^{2}+\frac{97}{2n}i+22]](https://tex.z-dn.net/?f=%3D%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%5Csum%5E%7Bn%7D%20_%7Bi%3D1%7D3%5B%5Cfrac%7B9%7D%7Bn%5E%7B3%7D%7Di%5E%7B3%7D%2B%5Cfrac%7B36%7D%7Bn%5E%7B2%7D%7Di%5E%7B2%7D%2B%5Cfrac%7B97%7D%7B2n%7Di%2B22%5D)
Answer:
b
Step-by-step explanation:
Answer:
B. 6
Step-by-step explanation:
The triangles are similar by AA Similarity.
The lengths of corresponding sides of the triangles are proportional.
AB/PQ = AC/PR
20/5 = 24/PR
4 = 24/PR
4PR = 24
PR = 6
Answer: PR = 6