Answer:
Step-by-step explanation:
A 2nd order polynomial such as this one will have 2 roots; a 3rd order polynomial 3 roots, and so on.
The quadratic formula is one of the faster ways (in this situation, at least) in which to find the roots. From 2x^2 + 4x + 7 we get a = 2, b = 4 and c = 7.
Then the discriminant is b^2 - 4ac, or, here, 4^2 - 4(2)(7), or -40. Because the discriminant is negative, we know that the roots will be complex and unequal.
Using the quadratic formula:
-4 ±√[-40] -4 ± 2i√10
x = ------------------ = ------------------
4 4
-2 ± i√10
Thus, the roots are x = ------------------
2
Answer:
I think the answer is -1 1/2
Answer:
1.Yes
2.Yes
3.No
4.No
5.Yes
Step-by-step explanation:
Just plug in the values of x and y for each set of coordinates.
Example from the first one
4x=y
4(5)=20
20=20 True
make sure all are valid by plugging in the next set of coordinates
4(6)=24
24=24 True
4(7)=28
28=28 True
and so forth with each equation plug in the coordinates
You don't say whether this is a right triangle or not.
Assuming it is a right triangle, then we use the Pythagorean Theorem to determine the length of the hypotenuse:
(hypo) = (length of third side) = √(12^2 + 4^2) = √(144+16) = √160 = 4√10.
This is approx. 12.65 inches. Since this does not match any of the possible answer choices, we'll have to take a different approach to answering this question.
Given that 2 sides of the given triangle are 12 and 4 inches, respectively, we see that the 3rd side has to be longer than 8 inches; otherwise we'd have three line segments on the same line, not forming a triangle.
By this reasoning, 9 inches is the only possible answer that could be correct. With sides 12, 9 and 4 inches, the triangle would be obtuse and appear quite flat, but not be part of a straight line as with a third side of 8.
Answer:
x =60 ° angles on a straight line
y+25° =120° exterior angle of the triangle
y=120°-25°=95°
y =95 °