Answer:
, where, n = 0, 1, 2, 3, 4, .........
Step-by-step explanation:
Given the arithmetic sequence in recursive formula.
f(0) = 30 and f(n + 1) = f(n) + 7 ......... (1)
Therefore, putting n = 0 in equation (1) we get f(1) = f(0) + 7 = 30 + 7 = 37 {Since, f(0) is given to be 30}
Again, putting n = 1 in equation (1) we get f(2) = f(1) + 7 = 37 + 7 = 44
And, putting n = 2 in equation (1) we get f(3) = f(2) + 7 = 44 + 7 = 51
and so on.
Therefore, the arithmetic sequence is 30, 37, 44, 51, .......
Therefore, the linear equation of this sequence is given by , where, n = 0, 1, 2, 3, 4, .........
(Answer)