I can use a chart by numbers them on the chart because I think 4 should be after the 3
Im sorry but this is not a quotient problem but an addition one, I can still simplyfy it for you though.
answer :
Answer:
<em>B. 86 degrees</em>
Step-by-step explanation:
Given the following angles:
m∠NOQ = 110
m∠NOP = 24
Using the addition postulate:
m∠NOQ = m∠NOP + m∠POQ
110 = 24 + m∠POQ
m∠POQ = 110 - 24
m∠POQ = 86
<em>Hence the measure of m∠POQ is 86 degrees</em>
This problem can be readily solved if we are familiar with the point-slope form of straight lines:
y-y0=m(x-x0) ...................................(1)
where
m=slope of line
(x0,y0) is a point through which the line passes.
We know that the line passes through A(3,-6), B(1,2)
All options have a slope of -4, so that should not be a problem. In fact, if we check the slope=(yb-ya)/(xb-xa), we do find that the slope m=-4.
So we can check which line passes through which point:
a. y+6=-4(x-3)
Rearrange to the form of equation (1) above,
y-(-6)=-4(x-3) means that line passes through A(3,-6) => ok
b. y-1=-4(x-2) means line passes through (2,1), which is neither A nor B
****** this equation is not the line passing through A & B *****
c. y=-4x+6 subtract 2 from both sides (to make the y-coordinate 2)
y-2 = -4x+4, rearrange
y-2 = -4(x-1)
which means that it passes through B(1,2), so ok
d. y-2=-4(x-1)
this is the same as the previous equation, so it passes through B(1,2),
this equation is ok.
Answer: the equation y-1=-4(x-2) does NOT pass through both A and B.
Answer:
20ft
Step-by-step explanation: