Answer:
8
Step-by-step explanation:
0.25 * 32=8, meaning that 8 of the students are boys. 32 is the whole, because it is the entire class. Hope this helps!
Answer:
1.3
Step-by-step explanation:
The pythagorean theorem works for all right triangles. Just make sure it IS a right triangle.
To find the equation of a line that is parallel to your original equation and goes through a certain point on a graph, here's what you need to know:
First you need to find the slope of your original equation.
To do that, you need to convert it to slope intercept form (y = mx+b).
Add the x over, and then divide everything by 5 to get the y by itself.
Here's what that would look like (without the small steps that I mentioned):
-x + 5y = 25
5y = x + 25
y = 1/5x + 5
That's the original equation rewritten in slope intercept form.
The m represents the slope, so this equation's slope is 1/5.
Because you are given a point, and now you have a slope, the best and easiest route is using point slope form.
I've seen different versions of the equation base but I prefer y - y(sub1) = m(x - x(sub1))
But since I can't use subscripts in this, I'll use the one with h and k. The h is the x value of the point, and the k is the y value.
(h,k)
Then just substitute the values in and solve for y.
y - k = m(x - h)
y + 5 = 1/5(x + 5)
y + 5 = 1/5x + 1
y = 1/5x - 4
Your final answer is
y = 1/5x - 4
You can double check by using a graph. If the slopes are the same, the lines should be parallel.
I hope that helps. If anything didn't make sense, feel free to ask me.
So let's start by guesstimating the slopes:
the green line has a slope close to -x, but more negative than that, possibly -2; the pink line has a slope close to +x, but higher towards +2.
Next let's look at the solution: the two lines intersect at the point (1, -1).
**you could just simple plug that x (1) into all the equations, but let's rule out answers anyway. ;)
A) is incorrect because the slopes of -1 and +1 are off from out predicted -2 and +2
B) is incorrect because of a similar reason, the slopes of +3 and +1 don't make any sense
C) Ooh, we do have a +2 and -2 for the slopes, and... violà! plug in 1 for the x's and we get -1 for the y in both equations
D) slopes are closer than in A and B, but plugging in 1 doesn't get us -1
So the correct answer is:
C) y = 2x - 3 and y = −2x + 1