Large surface area, as more particles are able to bump into one another and transfer heat.
Divide the flow rate (0.750 m³/s) by the cross-sectional area of each pipe:
diameter = 40 mm ==> area = <em>π</em> (0.04 m)² ≈ 0.00503 m²
diameter = 120 mm ==> area = <em>π</em> (0.12 m)² ≈ 0.0452 m²
Then the speed at the end of the 40 mm pipe is
(0.750 m³/s) / (0.00503 m²) ≈ 149.208 m/s ≈ 149 m/s
(0.750 m³/s) / (0.0452 m²) ≈ 16.579 m/s ≈ 16.6 m/s
Answer:
(a) Fₓ = 0 N
= 9.08 N
(b)
(a) Fₓ = 0 N
<u></u>
= 9.08 N
(c)
= 0 N
Fₓ = 9.08 N
Explanation:
The magnitude of the force will remain the same in each case, which is given as follows:
F = ma (Newton's Second Law)
where,
F = force = ?
m = mass = 4.54 kg
a = acceleration = 2 m/s²
Therefore,
F = (4.54 kg)(2 m/s²)
F = 9.08 N
Now, we come to each scenario:
(a)
Since the motion is in the vertical direction. Therefore the magnitude of the force in x-direction will be zero:
<u>Fₓ = 0 N</u>
For upward direction the force will be positive:
<u></u>
<u> = 9.08 N</u>
<u></u>
(b)
Since the motion is in the vertical direction. Therefore the magnitude of the force in x-direction will be zero:
<u>Fₓ = 0 N</u>
For upward direction the force will be negative:
<u></u>
<u> = - 9.08 N</u>
<u></u>
(c)
Since the motion is in the horizontal direction. Therefore the magnitude of the force in y-direction will be zero:
<u></u>
<u> = 0 N</u>
<u>Fₓ = 9.08 N</u>
High frequency = D, short wavelength
Explanation:
temperature o temperatura