Answer:
12.495m/s
Explanation:
Horizontal displacement is the range of the projectile motion.
The range is expressed as;
R = 2U/g
U is the speed at which the rock is thrown (initial speed)
g is the acceleration due to gravity.
Given
R = 255cm = 2.55m
g = 9.8m/s²
Required
Speed U
Substitute the given parameters into the formula as shown;
2.55 = 2U/9.8
Cross multiply
2U = 2.55×9.8
2U = 24.99
U = 24.99/2
U = 12.495m/s
Hence the speed that you thew the rock is 12.495m/s
Answer:
Here Strain due to testing is greater than the strain due to yielding that is why computation of load is not possible.
Explanation:
Given that
Yield strength ,Sy= 240 MPa
Tensile strength = 310 MPa
Elastic modulus ,E= 110 GPa
L=380 mm
ΔL = 1.9 mm
Lets find strain:
Case 1 :
Strain due to elongation (testing)
ε = ΔL/L
ε = 1.9/380
ε = 0.005
Case 2 :
Strain due to yielding


ε '=0.0021
Here Strain due to testing is greater than the strain due to yielding that is why computation of load is not possible.
For computation of load strain due to testing should be less than the strain due to yielding.
Answer:
Plato, Aristotle developed it further and used for 1400 years till Copernicus.
Explanation:
Can I see the book you read for I can answer and it more info because your question doesn’t make sense
Answer:
3 L
Explanation:
From the question given above, the following data were obtained:
Initial volume (V₁) = 2 L
Initial pressure (P₁) = 0.75 atm
Final pressure (P₂) = 0.5 atm
Final volume (V₂) =?
Using the Boyle's law equation, the new volume (i.e final volume) of the Ne gas can be obtained as:
Initial volume (V₁) = 2 L
Initial pressure (P₁) = 0.75 atm
Final pressure (P₂) = 0.5 atm
Final volume (V₂) =?
P₁V₁ = P₂V₂
0.75 × 2 = 0.5 × V₂
1.5 = 0.5 × V₂
Divide both side by 0.5
V₂ = 1.5 / 0.5
V₂ = 3 L
Thus, the new volume of the Ne gas is 3 L