Answer:2.47
Explanation:
So, the beaker weighs 1.40N when filled with water, brine of density weighs about 1.7N, you add the density + water. Have a good day!
Answer:
3.1 m/s
Explanation:
The total distance she has to run is the addition of the three lengths:
47 + 63 + 76 = 186 meters.
She needs to cover it one minute (60 seconds). Therefore her speed must be:
186 m / 60 s = 3.1 m/s
Answer: a) 11.76 m/s b) 7.056 m
Explanation:
The described situation is as follows:
An object is dropped from the top of a tower and when measuring the time it takes to reach the ground that turns out to be 0.02 minutes.
This situation is related to free fall, this also means we have constant acceleration, hence the equations we will use are:
(1)
(2)
Where:
Is the final velocity of the object
Is the initial velocity of the object (it was dropped)
is the acceleration due gravity
is the height of the tower
is the time it takes to the object to reach the ground
b) Begining with (1):
(3)
(4)
(5) This is the final velocity of the object
a) Substituting (5) in (2):
(6)
Clearing
:
(7)
(8) This is the height of the tower
Answer:
theres an decrease in temperature because 252,000 is more than 42,000. so its colder and not as hot as 252,000.
Explanation:
Answer:
(a)
(b) It won't hit
(c) 110 m
Explanation:
(a) the car velocity is the initial velocity (at rest so 0) plus product of acceleration and time t1

(b) The velocity of the car before the driver begins braking is

The driver brakes hard and come to rest for t2 = 5s. This means the deceleration of the driver during braking process is

We can use the following equation of motion to calculate how far the car has travel since braking to stop


Also the distance from start to where the driver starts braking is

So the total distance from rest to stop is 352 + 88 = 440 m < 550 m so the car won't hit the limb
(c) The distance from the limb to where the car stops is 550 - 440 = 110 m