Answer:
Mean: 14
Median: 15
Mode: All values appear just once
Range: 7
17-6×10÷2+12
Apply bodmas
=17-6×5+12
=17-30+12
=17-18
=-1
Since we have a cubic root, we're interested in factoring cubes inside the root, so that we can take them out. If we factor 648, we have

So, we have
![3x\sqrt[3]{648 x^4 y^8} = \sqrt[3]{3\times 6^3\cdot x^3\cdot x \cdot y^6\cdot y^2}=3x\cdot 6\cdot x\cdot y^2\sqrt[3]{3\cdot x\cdot y^2}](https://tex.z-dn.net/?f=3x%5Csqrt%5B3%5D%7B648%20x%5E4%20y%5E8%7D%20%3D%20%5Csqrt%5B3%5D%7B3%5Ctimes%206%5E3%5Ccdot%20x%5E3%5Ccdot%20x%20%5Ccdot%20y%5E6%5Ccdot%20y%5E2%7D%3D3x%5Ccdot%206%5Ccdot%20x%5Ccdot%20y%5E2%5Csqrt%5B3%5D%7B3%5Ccdot%20x%5Ccdot%20y%5E2%7D)
And the result simplifies to
![18x^2y^2\sqrt[3]{3xy^2}](https://tex.z-dn.net/?f=18x%5E2y%5E2%5Csqrt%5B3%5D%7B3xy%5E2%7D)
When adding or subtracting fractions the denominators must be the same
convert 9 to 27/3
27/3-51/3= - 22/3 or - 7 1/3
nope this helps