1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
balu736 [363]
3 years ago
12

Calculate the value of the expression. 47 - (2 x4)

Mathematics
2 answers:
Arlecino [84]3 years ago
8 0

Answer:

39

Step-by-step explanation:

do 2 × 4 first to get 8 then subtract 8 from 47 to get 39

skelet666 [1.2K]3 years ago
3 0

Answer:

39

Step-by-step explanation:

47- (2 x 4) first multiply what's in the parentheses

47 - 8       next subtract

39             then you have your answer

47 = 39    after you get your answer you check your work

47 = 39 + 8 you just add the number you subtracted

47 = 47        if the numbers match you know you got it right

Hope this helps

You might be interested in
2. Suppose 27 blackberry plants started growing in a yard. Absent constraint, the blackberry plants will spread by 80% a month.
Marta_Voda [28]

Explanation

The question indicates we should use a logistic model to estimate the number of plants after 5 months.

This can be done using the formula below;

\begin{gathered} P(t)=\frac{K}{1+Ae^{-kt}};A=\frac{K-P_{0_{}}}{P_0}_{} \\ \text{From the question} \\ P_0=\text{ Initial Plants=27} \\ K=\text{Carrying capacity =140} \end{gathered}

Workings

Step 1: We would need to get the value of A using the carrying capacity and initial plants that started growing in the yard.

This gives;

\begin{gathered} A=\frac{140-27}{27} \\ A=\frac{113}{27} \end{gathered}

Step 2: Substitute the value of A into the formula.

P(t)=\frac{140}{1+\frac{113}{27}e^{-kt}}

Step 3: Find the value of the constant k

Kindly recall that we are told that the plants increase by 80% after each month. Therefore, after one month we would have;

\begin{gathered} P(1)=27+(\frac{80}{100}\times27) \\ P(1)=\frac{243}{5} \end{gathered}

We can then have that after t= 1month

\begin{gathered} \frac{140}{1+\frac{113}{27}e^{-k\times1}}=\frac{243}{5} \\ Flip\text{ the equation} \\ \frac{1+\frac{113}{27}e^{-k}}{140}=\frac{5}{243} \\ 243(1+\frac{113}{27}e^{-k})=700 \\ 243+1017e^{-k}=700 \\ 1017e^{-k}=700-243 \\ 1017e^{-k}=457 \\ e^{-k}=\frac{457}{1017} \\ -k=\ln (\frac{457}{1017}) \end{gathered}

Step 4: Substitute -k back into the initial formula.

\begin{gathered} P(t)=\frac{140}{1+\frac{113}{27}e^{\ln (\frac{457}{1017})t}} \\ =\frac{140}{1+\frac{113}{27}(e^{\ln (\frac{457}{1017})})^t} \\ P(t)=\frac{140}{1+\frac{113}{27}(\frac{457}{1017}^{})^t} \\  \end{gathered}

The above model is can be used to find the population at any time in the future.

Therefore after 5 months, we can estimate the model to be;

\begin{gathered} P(5)=\frac{140}{1+\frac{113}{27}(\frac{457}{1017}^{})^5} \\ P(5)=\frac{140}{1.07668} \\ P(5)=130.029\approx130 \end{gathered}

Answer: The estimated number of plants after 5 months is 130 plants.

8 0
1 year ago
Is -14 a natural number
Arisa [49]
Natural numbers are 1,2,3,4,5.....etc so no -14 is not a natural number
7 0
3 years ago
Read 2 more answers
Convert 2 1/5 to an<br> improper fraction.
DochEvi [55]

Answer: 11/5

Step-by-step explanation:

you would do (2) times (5) to get 10.

then you'd add 1+10 to get 11.

write this new number as the numerator... 11/5.

3 0
3 years ago
Read 2 more answers
What is the value of the interquartile range of the data below? A box-and-whisker plot. The number line goes from 0 to 52. The w
Softa [21]

Answer:

The interquartile range is 12.

Step-by-step explanation:

In a box-and-whisker plot, the left edge of the box is the lower quartile and the right edge of the box is the upper quartile. The line dividing the box is the median. The end of the left whisker shows the minimum value. The end of the right whisker shows the maximum value.

In your question, the lower quartile is 29, the upper quartile is 41, while the median is 32. The minimum value is 10 and the maximum value is 51.

The formula for the interquartile range is as follows:

Interquartile Range = Upper quartile - Lower quartile

In this question, interquartile range = 41 - 29 which equals 12. Hence, the answer is 12.  

5 0
3 years ago
Read 2 more answers
Two chemicals A and B are combined to form a chemical C. The rate, or velocity, of the reaction is proportional to the product o
Orlov [11]

Answer:

25.35 grams of C  is formed in 14 minutes

after a long time , the limiting amount of C = 60g ,

A = 0 gram

and  B = 30 grams;           will remain.

Step-by-step explanation:

From the information given;

Let consider x(t) to represent the number of grams of compound C present at time (t)

It is  obvious that x(0) = 0 and x(5) = 10 g;

And for x gram of C;

\dfrac{2}{3}x   grams of A is used ;

also \dfrac{1}{3} x   grams of B is used

Similarly; The amounts of A and B remaining at time (t) are;

40 - \dfrac{2}{3}x   and 50 - \dfrac{1}{3}x

Therefore ; rate of formation of compound C can be said to be illustrated as ;

\dfrac{dx}{dt }\propto (40 - \dfrac{2}{3}x)(50-\dfrac{1}{3}x)

=k \dfrac{2}{3}( 60-x) \dfrac{1}{3}(150-x)

where;

k = proportionality constant.

= \dfrac{2}{9}k (60-x)(150-x)

By applying the  separation of variable;

\dfrac{1}{(60-x)(150-x)}dx= \dfrac{2}{9}k dt \\ \\ \\

Solving by applying partial fraction method; we have:

\{  \dfrac{1}{90(60-x)} - \dfrac{1}{90(150-x)} \}dx = \dfrac{2}{9}kdt

\dfrac{1}{90}(\dfrac{1}{x-150}-\dfrac{1}{x-60})dx =\dfrac{2}{9}kdt

Taking the integral of both sides ; we have:

\dfrac{1}{90}\int\limits(\dfrac{1}{x-150}- \dfrac{1}{x-60})dx= \dfrac{2}{9}\int\limits kdx

\dfrac{1}{90}(In(x-150)-In(x-60))  = \dfrac{2}{9}kt+C

\dfrac{1}{90}(In(\dfrac{x-150}{x-60})) = \dfrac{2}{9}kt+C

In( \dfrac{x-150}{x-60})= 20 kt + C_1  \ \ \ \ \ where  \ \ C_1 = 90 C

\dfrac{x-150}{x-60}= Pe ^{20 kt}  \ \ \ \ \ where  \ \ P= e^{C_1}

Applying the initial condition x(0) =0  to determine the value of P

Replace x= 0 and t =0 in the above equation.

\dfrac{0-150}{0-60}= Pe ^{0}

\dfrac{5}{2}=P

Thus;

\dfrac{x-150}{x-60}=Pe^{20kt} \\ \\  \\ \dfrac{x-150}{x-60}=\dfrac{5}{2}e^{20kt} \\ \\ \\ 2x -300 =5e^{20kt}(x-60)

2x - 300 = 5xe^{20kt} - 300 e^{20kt} \\ \\ 5xe^{20kt} -2x = 300 e^{20kt} -300 \\ \\ x(5e^{20kt} -2) = 300 e^{20kt} -300 \\ \\ x= \dfrac{300 e^{20kt}-300}{5e^{20kt}-2}

Thus;

x(t)= \dfrac{300 e^{20kt}-300}{5e^{20kt}-2}

Applying the initial condition for x(7) = 15 , to find the value of k

Replace t = 7 into x(t)= \dfrac{300 e^{20kt}-300}{5e^{20kt}-2}

x(7)= \dfrac{300 e^{20k(7)}-300}{5e^{20k(7)}-2}

15= \dfrac{300 e^{140k}-300}{5e^{140k}-2}

75e^{140k}-30 ={300 e^{140k}-300}

225e^{140k}=270

e^{140k}=\dfrac{270}{225}

e^{140k}=\dfrac{6}{5}

140  k = In (\dfrac{6}{5})

k = \dfrac{1}{140}In (\dfrac{6}{5})

k = 0.0013

Thus;

x(t)= \dfrac{300 e^{20kt}-300}{5e^{20kt}-2}

x(t)= \dfrac{300 e^{20(0.0013)t}-300}{5e^{20(0.0013)t}-2}

x(t)= \dfrac{300 e^{(0.026)t}-300}{5e^{(0.026)t}-2}

The amount of C formed in 14 minutes is ;

x(14)= \dfrac{300 e^{(0.026)14}-300}{5e^{(0.026)14}-2}

x(14) = 25.35 grams

Thus 25.35 grams of C  is formed in 14 minutes

NOW; The limiting amount of C after a long time is:

\lim_{t \to \infty} =  \lim_{t \to \infty} (\dfrac{300 e^{(0.026)t}-300}{5e^{(0.026)t}-2})

\lim_{t \to \infty} (\dfrac{300- 300 e^{(0.026)t}}{2-5e^{(0.026)t}})

As; \lim_{t \to \infty}  e^{-20kt} = 0

⇒ \dfrac{300}{5}

= 60 grams

Therefore  as t → \infty;   x = 60

and the amount of A that remain = 40 - \dfrac{2}{3}x

=40 - \dfrac{2}{3}(60)

= 40 -40

=0 grams

The amount of B that remains = 50 - \dfrac{1}{3}x

= 50 - \dfrac{1}{3}(60)

= 50 - 20

= 30 grams

Hence; after a long time ; the limiting amount of C = 60g , and 0 g of A , and 30 grams of B will remain.

I Hope That Helps You Alot!.

5 0
4 years ago
Other questions:
  • 4th term of (4x-y)^9
    15·1 answer
  • Why does the graph begin at X=1?
    8·2 answers
  • If a country's debt-to-GDP ratio if currently 50% and its debt is expected to grow from $40 trillion to $50 trillion in the next
    5·1 answer
  • Please help math 25 points<br> if you guess your answer will be deleted
    8·2 answers
  • On the first three tests, sally scored 75 points. On the third test her score was 1 point more than on the second test. Her aver
    14·1 answer
  • how do i make 4y squared -3=13 into a verbal expression (couldnt find the subscript so i could put an actual 2 for squared)
    6·1 answer
  • Which of the following is an even function?
    6·1 answer
  • A un carpintero le encargaron cambiar la forma de una mesa, de circular a cuadrada. El radio de la mesa mide 2 m y los lados del
    13·1 answer
  • The Bill of Rights was added to the U.S. Constitution to support the Anti-Federalists’ demand for the protection of what?
    14·2 answers
  • Hurry please will mark brainliest!!!!!
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!