Nolur acil lütfen yalvarırım sana da hayırlı
Answer:
= 9,593.1 Joules
Explanation:
Heat absorbed by water is equivalent to heat released by copper.
Heat absorbed is given by;
Q = mcΔT
where m is the mass, c is the specific capacity and ΔT is the change in temperature.
Therefore;
Since dnsity of water is 1 g/mL, and specific heat capacity is 4.18 J/g°C while the change in temperature is (75-24) = 51°C.
Heat absorbed by water = 45 g × 4.18 J/g°C × 51
= 9,593.1 Joules
Therefore, the heat released by copper is 9,593.1 Joules
<h2>The net ionic equation that correspond to Fe(ClO4)2 +Na2CO3 is</h2>
<u>Fe ^2+(aq) +CO3^2-(aq) → FeCO3 (s)</u>
<h3>Explanation</h3><h3 /><h3>write the balance chemical equation</h3>
Fe(ClO4)2 (aq) + Na2CO3(aq)→ FeCO3 (s) + 2 NaClO4
<h3>write the ionic equation</h3>
Fe^2+(aq) + 2ClO4 ^-(aq) + 2Na^+(aq) +CO3^2- (aq) → FeCO3 (s) + 2Na^+ + 2ClO4^-
<h3>cancel the spectator ions in both side</h3>
- that is ( 2ClO4^- and 2Na+)
the ionic equation is therefore
<u>Fe^2+(aq) + CO3^2- →FeCo3(s)</u>
Molar mass KCl = <span>74.5513 g/mol
Number of moles:
21.9 / 74.5513 => 0.293 moles
Volume = 869 mL / 1000 => 0.869 L
Molarity = moles / Volume
Molarity = 0.293 / 0.869
=> 0.337 M</span>
Answer:
Thus, the order of the reaction is 2.
The rate constant of the graph which is :- 2.00 M⁻¹s⁻¹
Explanation:
The kinetics of a reaction can be known graphically by plotting the concentration vs time experimental data on a sheet of graph.
The concentration vs time graph of zero order reactions is linear with negative slope.
The concentration vs time graph for a first order reactions is a exponential curve. For first order kinetics the graph between the natural logarithm of the concentration vs time comes out to be a straight graph with negative slope.
The concentration vs time graph for a second order reaction is a hyberbolic curve. Also, for second order kinetics the graph between the reciprocal of the concentration vs time comes out to be a straight graph with positive slope.
Considering the question,
A plot of 1/[NOBr] vs time give a straight line with a slope of 2.00 M⁻¹s⁻¹.
<u>Thus, the order of the reaction is 2.</u>
<u>Also, slope is the rate constant of the graph which is :- 2.00 M⁻¹s⁻¹</u>