Answer:
The enthalpy of the reaction is coming out to be -380.16 kJ.
Explanation:
Enthalpy change is defined as the difference in enthalpies of all the product and the reactants each multiplied with their respective number of moles. It is represented as 
The equation used to calculate enthalpy change is of a reaction is:
![\Delta H_{rxn}=\sum [n\times \Delta H_f(product)]-\sum [n\times \Delta H_f(reactant)]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H_f%28product%29%5D-%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H_f%28reactant%29%5D)
For the given chemical reaction:

The equation for the enthalpy change of the above reaction is:
![\Delta H_{rxn}=[(2 mol\times \Delta H_f_{(N_2O)})+(2 mol\times\Delta H_f_{(H_2O)} )]-[(1 mol\times \Delta H_f_{(N_2H_4)})+(1 mol\times \Delta H_f_{(N_2O_4)})]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B%282%20mol%5Ctimes%20%5CDelta%20H_f_%7B%28N_2O%29%7D%29%2B%282%20mol%5Ctimes%5CDelta%20H_f_%7B%28H_2O%29%7D%20%29%5D-%5B%281%20mol%5Ctimes%20%5CDelta%20H_f_%7B%28N_2H_4%29%7D%29%2B%281%20mol%5Ctimes%20%5CDelta%20H_f_%7B%28N_2O_4%29%7D%29%5D)
We are given:

Putting values in above equation, we get:
![\Delta H_{rxn}=[(2 mol\times 81.6 kJ/mol)+2 mol\times -241.8 kJ/mol)]-[(1 mol\times (50.6 kJ/mol))+(1 mol\times (9.16))]\\\\\Delta H_{rxn}=-380.16 kJ](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B%282%20mol%5Ctimes%2081.6%20kJ%2Fmol%29%2B2%20mol%5Ctimes%20-241.8%20kJ%2Fmol%29%5D-%5B%281%20mol%5Ctimes%20%2850.6%20kJ%2Fmol%29%29%2B%281%20mol%5Ctimes%20%289.16%29%29%5D%5C%5C%5C%5C%5CDelta%20H_%7Brxn%7D%3D-380.16%20kJ)
Hence, the enthalpy of the reaction is coming out to be -380.16 kJ.
Carbons starting from the left end:
- sp²
- sp²
- sp²
- sp
- sp
Refer to the sketch attached.
<h3>Explanation</h3>
The hybridization of a carbon atom depends on the number of electron domains that it has.
Each chemical bond counts as one single electron domain. This is the case for all chemical bonds: single, double, or triple. Each lone pair also counts as one electron domain. However, lone pairs are seldom seen on carbon atoms.
Each carbon atom has four valence electrons. It can form up to four chemical bonds. As a result, a carbon atom can have up to four electron domains. It has a minimum of two electron domains, with either two double bonds or one single bond and one triple bond.
- A carbon atom with four electron domains is sp³ hybridized;
- A carbon atom with three electron domains is sp² hybridized;
- A carbon atom with two electron domains is sp hybridized.
Starting from the left end (H₂C=CH-) of the molecule:
- The first carbon has three electron domains: two C-H single bonds and one C=C double bond; It is sp² hybridized.
- The second carbon has three electron domains: one C-H single bond, one C-C single bond, and one C=C double bond; it is sp² hybridized.
- The third carbon has three electron domains: two C-C single bonds and one C=O double bond; it is sp² hybridized.
- The fourth carbon has two electron domains: one C-C single bond and one C≡C triple bond; it is sp hybridized.
- The fifth carbon has two electron domains: one C-H single bond and one C≡C triple bond; it is sp hybridized.
moles NaOH = c · V = 0.1973 mmol/mL · 29.43 mL = 5.806539 mmol
moles H2SO4 = 5.806539 mmol NaOH · 1 mmol H2SO4 / 2 mmol NaOH = 2.9032695 mmol
Hence
[H2SO4]= n/V = 2.9032695 mmol / 32.42 mL = 0.08955 M
The answer to this question is [H2SO4] = 0.08955 M
Answer:
441.28 g Oxygen
Explanation:
- The combustion of hydrogen gives water as the product.
- The equation for the reaction is;
2H₂(g) + O₂(g) → 2H₂O(l)
Mass of hydrogen = 55.6 g
Number of moles of hydrogen
Moles = Mass/Molar mass
= 55.6 g ÷ 2.016 g/mol
= 27.8 moles
The mole ratio of Hydrogen to Oxygen is 2:1
Therefore;
Number of moles of oxygen = 27.5794 moles ÷ 2
= 13.790 moles
Mass of oxygen gas will therefore be;
Mass = Number of moles × Molar mass
Molar mass of oxygen gas is 32 g/mol
Mass = 13.790 moles × 32 g/mol
<h3> = 441.28 g</h3><h3>Alternatively:</h3>
Mass of hydrogen + mass of oxygen = Mass of water
Therefore;
Mass of oxygen = Mass of water - mass of hydrogen
= 497 g - 55.6 g
<h3> = 441.4 g </h3>