Answer:
0.00369 moles of HCl react with carbonate.
Explanation:
Number of moles of HCl present initially =
moles = 0.00600 moles
Neutralization reaction (back titration): 
According to above equation, 1 mol of NaOH reacts with 1 mol of 1 mol of HCl.
So, excess number of moles of HCl present = number of NaOH added for back titration =
moles = 0.00231 moles
So, mole of HCl reacts with carbonate = (Number of moles of HCl present initially) - (excess number of moles of HCl present) = (0.00600 - 0.00231) moles = 0.00369 moles
Hence, 0.00369 moles of HCl react with carbonate.
Answer:
The answer is
<h2>0.052 g/cm³</h2>
Explanation:
The density of a substance can be found by using the formula

From the question
mass = 2.5 g
volume = 48 cm³
The density is

We have the final answer as
<h3>0.052 g/cm³</h3>
Hope this helps you
Answer is: the molar mass od sodium carbonate (Na₂CO₃) is 106.0 g/mol.
M(Na₂CO₃) = 2 · Ar(Na) + Ar(C) + 3 · Ar(O).
M(Na₂CO₃) = 2 · 23 + 12 + 3 · 16 · g/mol.
M(Na₂CO₃) = 46 + 12 + 48 · g/mol.
M(Na₂CO₃) = 106 g/mol; molar mass of sodium carbonate.
Ar is relative atomic mass (the ratio of the average mass of atoms of a chemical element to one unified atomic mass unit) of an element.
Answer:
hydrogen bonds between water molecules
Explanation:
The hydrogen bonds between water molecules conditions the bulk of its physical property most especially its relatively high boiling point. The hydrogen bond results from the attraction between the oxygen of a water molecule and the hydrogen of another water molecule. The more electronegative oxygen atom causes a distortion and the attraction leads to a strong intermolecular bond between atoms of the water molecules.
Hydrogen bond is a very strong bond and it is responsible for the physical properties of water.