Answer:
The heat produced is -15,1kJ
Explanation:
For the reaction:
2SO₂+O₂ → 2SO₃
The enthalpy of reaction is:
ΔHr = 2ΔHf SO₃ - 2ΔHf SO₂
As ΔHf SO₃ = -395,7kJ and ΔHf SO₂ = -296,8kJ
<em>ΔHr = -197,8kJ</em>
Using n=PV/RT, the moles of reaction are:
= <em>0,153 moles of reaction</em>
As 2 moles of reaction produce -197,8kJ of heat, 0,153moles produce:
0,153mol×
= <em>-15,1kJ</em>
<em></em>
I hope it helps!
Changing the volume increases the area that the molecules collide with so the force is spread over a larger area.
<u>Answer:</u> The density of liquid is 
<u>Explanation:</u>
We are given:
Mass of cylinder,
= 65.1 g
Mass of liquid and cylinder combined, M = 120.5 g
Mass of liquid,
= 
To calculate density of a substance, we use the equation:

We are given:
Mass of liquid = 55.4 g
Volume of liquid = 49.3 mL =
(Conversion factor:
)
Putting values in above equation, we get:

Hence, the density of liquid is 
Answer:
+1
Explanation:
Electrochemistry. In oxidation–reduction (redox) reactions, electrons are transferred from one A redox reaction is balanced when the number of electrons lost by the reductant Hg(l)∣Hg2Cl2(s)∣Cl−(aq) ∥ Cd2+(aq)∣Cd(s).
As is evident from the Stock number, mercury has an oxidation state of +1. This makes sense, as chlorine usually has an oxidation state of -1.
Answer:
They are in constant motion.
Explanation:
More energy\heat= more kinetic energy=more motion\movement