Answer:
Explanation:
Plotting the original location of the helicopter before it flies 25 km north, it would be at the origin, (0,0) then after it flies north, the y vertex gains 25 points, so it would be (0,25)
After it flies east, the x coordinate gains 5 points, so it would now be (5,25)
After it flies south, the y coordinate loses or is subtracted by 5 points. so it would now be (5,20)
After flying west, the x coordinate loses 15 points. So the final vertex would be at (-10,20)
East = Right
West = Left
South= Down
North = Up
I used mainly mathematical methods by adding and subtracting the x and y coordinate values, but this could be graphed easily since I gave the coordinates just incase!
Hope this helps!
Answer:
A. Increasing the voltage of the battery
Explanation:
The relationship between voltage, V, current, I and resistance, R, is given as follows;
V = I × R
∴ I = V/R
From the above relationship, the current flowing in the circuit is directly proportional to the voltage of the battery, and inversely proportional to the resistance, 'R', of the circuit
Therefore, increasing the voltage, 'V', of the battery, increases the total current, 'I', flowing in the circuit.
I belive its like 1200 mile per hour ive done he math for it
Answer:
56.86153 N
Explanation:
t =Time taken
F = Force
Power

Work done

The magnitude of the force that is exerted on the handle is 56.86153 N