Answer: 17.68 s
Explanation:
This problem is a good example of Vertical motion, where the main equation for this situation is:
(1)
Where:
is the height of the ball when it hits the ground
is the initial height of the ball
is the initial velocity of the ball
is the time when the ball strikes the ground
is the acceleration due to gravity
Having this clear, let's find
from (1):
(2)
Rewritting (2):
(3)
This is a quadratic equation (also called equation of the second degree) of the form
, which can be solved with the following formula:
(4)
Where:



Substituting the known values:
(5)
Solving (5) we find the positive result is:

Answer:

Explanation:
consider the mass of each train car be m
m₁ = m₂ = m₃ = m
speed of the three identical train
u₁ = u₂ = u₃ = 1.8 m/s
m₄ = m u₄ = 4.5 m/s
m₅ = m u₅ = 0 (initial velocity )
final velocity
v₁ = v₂ = v₃ = v₄ = v₅ = v
using conservation of momentum
m₁u₁ + m₂u₂ + m₃u₃ + m₄u₄ + m₅u₅ = m₁v₁ + m₂v₂ + m₃v₃ + m₄v₄ + m₅v₅
m (1.8 + 1.8 + 1.8 +4.5) = 5 m v


<span>Your answer should be water flows without turning on a facet. Hope this helps!
</span>
I’ve done this before the answer is B