Answer:
Explanation:
Given that,
Pie diameter = 9 in
Then, the circumference of the pie is
P = πd = 9π in
Then rim of the pie rotates 233 in,
Then,
1 Revolution of the pie is 9π in,
So, for 233 in, we will have
233 in / 9π in revolution
8.24 revolution
So, the revolution of the pie is 8.24
1 revolution is 2πrad
Then,
8.24 revolution = 8.24 × 2π = 51.78 rad.
And also, 1 revolution is 360°
Then,
8.24 revolution = 8.24 × 360 = 2966.4°
So,
In revolution, θ = 8.24 revolution
In radian = θ = 57.78 rad
In degree θ = 2966.4°
Answer:
68.8 N 13.8°N of W
Explanation:
F₁ is 50 N 30°N of W. The terminal angle is 150°.
F₂ is 25 N 20°S of W. The terminal angle is -160°.
Graphically, you can add the vectors using head-to-tail method. Move F₂ so that the tail of the vector is at the head of F₁. The resultant vector will be from the tail of F₁ to the head of F₂.
Algebraically, find the x and y components of each vector.
F₁ₓ = 50 N cos(150°) = -43.3 N
F₁ᵧ = 50 N sin(150°) = 25 N
F₂ₓ = 25 N cos(-160°) = -23.5 N
F₂ᵧ = 25 N sin(-160°) = -8.6 N
The x and y components of the resultant vector are the sums:
Fₓ = -43.3 N + -23.5 N = -66.8 N
Fᵧ = 25 N + -8.6 N = 16.4 N
The magnitude of the resultant force is:
F = √(Fₓ² + Fᵧ²)
F = √((-66.8 N)² + (16.4 N)²)
F = 68.8 N
The direction of the resultant force is:
θ = tan⁻¹(Fᵧ / Fₓ)
θ = tan⁻¹(16.4 N / -66.8 N)
θ = 166.2°
θ = 13.8°N of W
"Constant velocity" is another way of saying "zero acceleration".
Answer:
the resistance that one surface or object encounters when moving over another.
Explanation: