The balanced equation for the above reaction is as follows;
CaCO₃ + 2HCl ----> CaCl₂ + H₂O + CO₂
stoichiometry of CaCO₃ to HCl is 1:2
molar volume states that 1 mol of any gas occupies a volume of 22.4 L at STP.
volume of 22.4 L occupied by 1 mol
therefore 0.56 L occupied by - 0.56 L / 22.4 L/mol = 0.025 mol
number of HCl moles reacted - 0.025 mol
2 mol of HCl reacts with 1 mol of CaCO₃
therefore 0.025 mol reacts with - 0.025/2 = 0.0125 mol
mass of CaCO₃ required - 0.0125 mol x 100 g/mol = 1.25 g
1.25 g of CaCO₃ is required
Answer:
16
Explanation:
Group two elements are alkaline earth metal.
All these have two valance electrons. In order to achieve noble gas configuration it loses its two valance and get complete octet.
Reaction with group 16.
Reaction with oxygen,
They react with oxygen and form oxide.
2Ba + O₂ → 2BaO
2Mg + O₂ → 2MgO
2Ca + O₂ → 2CaO
this oxide form hydroxide when react with water,
BaO + H₂O → Ba(OH)₂
MgO + H₂O → Mg(OH)₂
CaO + H₂O → Ca(OH)₂
With sulfur,
Mg + S → MgS
Ca + S → CaS
Ba + S → BaS
3I₂ + 2Al → 2AlI₃
m(I₂)=3M(I₂)m(Al)/{2M(Al)}
m(I₂)=3*253.8*20.4/{2*27.0}=287.64 g
Answer:
Answer: V=67.2 L
Explanation:
Ideal Gas Law: PV=nRT
P=1.00 atm (STP)
V=?
n=3.00 mol
R=0.08206Latm/Kmol
T=273.15 K (STP)
To find V, we would manipulate the equation to V=nRT/P
With significan figures, our answer is V=67.2 L.
Answer:
<h2>13.82 moles</h2>
Explanation:
To find the number of moles in a substance given it's number of entities we use the formula

where n is the number of moles
N is the number of entities
L is the Avogadro's constant which is
6.02 × 10²³ entities
From the question we have

We have the final answer as
<h3>13.82 moles</h3>
Hope this helps you