Answer:
800 lb of pure solvent , 1700 lb of 20% solution and 500 lb of 10% solution will be mixed to form 3000 lb of 13 % solution .
Explanation:
3000 lb of 13% solution is required .
Total adhesive in weight = 3000 x .13 = 390 lb of adhesive
Available = 500 lb of 10% solution = 50 lb of adhesive
Rest = 390 - 50 = 340 lb required .
rest mass of solution = 3000 - 500 = 2500 lb
mass of adhesive required = 340 lb
Let the mass of 20% required be V
mass of adhesive = .20 V
.20 V = 340
V = 1700
rest of the volume = 2500 - 1700 = 800 lb which will be of pure solvent
So 800 lb of pure solvent , 1700 lb of 20% solution and 500 lb of 10% solution will be mixed to form 3000 lb of 13 % solution .
<h3>
Answer:</h3>
The centripetal acceleration is 26.38 m/s²
<h3>
Explanation:</h3>
We are given;
- Mass of rubber stopper = 13 g
- Length of the string(radius) = 0.93 m
- Time for one revolution = 1.18 seconds
We are required to calculate the centripetal acceleration.
To get the centripetal acceleration is given by the formula;
Centripetal acc = V²/r
Where, V is the velocity and r is the radius.
Since time for 1 revolution is 1.18 seconds,
Then, V = 2πr/t, taking π to be 3.142 ( 1 revolution = 2πr)
Therefore;
Velocity = (2 × 3.142 × 0.93 m) ÷ 1.18 sec
= 4.953 m/s
Thus;
Centripetal acceleration = (4.953 m/s)² ÷ 0.93 m
= 26.38 m/s²
Hence, the centripetal acceleration is 26.38 m/s²
Answer:
283.725 kJ ⋅ mol − 1
Explanation:
C(s) + 2Br2(g) ⇒ CBr4(g) , Δ H ∘ = 29.4 kJ ⋅ mol − 1
Br2(g) ⇒ Br(g) , Δ H ∘ = 111.9 kJ ⋅ mol − 1
C(s) ⇒ C(g) , Δ H ∘ = 716.7 kJ ⋅ mol − 1
4*eqn(2) + eqn(3) ⇒ 2Br2(g) + C(s) ⇒ 4 Br(g) + C(g) , Δ H ∘ = 1164.3 kJ ⋅ mol − 1
eqn(1) - eqn(4) ⇒ 4 Br(g) + C(g) ⇒ CBr4(g) , Δ H ∘ = -1134.9 kJ ⋅ mol − 1
so,
average bond enthalpy is
= 283.725 kJ ⋅ mol − 1
Answer:
it is option b
Explanation:
this is because neutralisation reaction takes place only between a base and an acid.
now, in OPTION A it is a neutral and base
OPTIONB it is acid and base
OPTION C both are base
OPTION D IT IS NOT POSSIBLE
– liquids, solids or gases – are made up of atoms and molecules that are in constant motion.<span> The theory also states that collisions between atoms and molecules are elastic</span>