Answer:
a) 231.9 °C
b) 100% Sn
c) 327.5 °C
d) 100% Pb
Explanation:
This is a mixture of two solids with different fusion point:


<u>Given that Sn has a lower fusion temperature it will start to melt first at that temperature. </u>
So the first liquid phase forms at 231.9 °C and because Pb starts melting at a higher temperature, that phase's composition will be 100% Sn.
The mixture will be completely melted when you are a the higher melting temperature of all components (in this case Pb), so it will all in liquid phase at 327.5 °C.
At that temperature all Sn was already in liquid state and, therefore, the last solid's composition will be 100% Pb.
When NH3 is dissolved in water, it dissociates partially producing NH4+ ions and OH- ions. It has an equation:
NH3 + H2O → NH4+ + OH-
<span>We use the Kb expression to determine the [OH-] concentration,
</span>
<span>Kb = [NH4+] [OH-] /* [NH3] </span>
We can write NH4+ as OH- since they are of equal ratio.
<span>(1.76*10^-5) = [OH-]² / 0.188
</span><span>[OH-]² = 3.3088*10^-6 </span>
<span>[OH-] = 1.819*10^-3 </span>
We calculate for H+ concentration as follows:
<span>[H+] [OH-] = 10^-14 </span>
<span>[H+] = 10^-14 / [OH-] </span>
<span>[H+] = 10^-14 / (1.819*10^-3) </span>
<span>[H+] = 5.50*10^-12 </span>
<span>pH = -log [H+] </span>
<span>pH = -log (5.5*10^-12) </span>
<span>pH = 11.26</span>
Sodium oxide + Water= Sodium hydroxide
What question do you need help with
Sodium ion has 10 electrons. So: 1s^2 2s^2 2p^6