Answer:
1. V₁ = 2.0 mL
2. V₁ = 2.5 mL
Explanation:
<em>You are provided with a stock solution with a concentration of 1.0 × 10⁻⁵ M. You will be using this to make two standard solutions via serial dilution.</em>
To calculate the volume required (V₁) in each dilution we will use the dilution rule.
C₁ . V₁ = C₂ . V₂
where,
C are the concentrations
V are the volumes
1 refers to the initial state
2 refers to the final state
<em>1. Perform calculations to determine the volume of the 1.0 × 10⁻⁵ M stock solution needed to prepare 10.0 mL of a 2.0 × 10⁻⁶ M solution.</em>
C₁ . V₁ = C₂ . V₂
(1.0 × 10⁻⁵ M) . V₁ = (2.0 × 10⁻⁶ M) . 10.0 mL
V₁ = 2.0 mL
<em>2. Perform calculations to determine the volume of the 2.0 × 10⁻⁶ M solution needed to prepare 10.0 mL of a 5.0 × 10⁻⁷ M solution.</em>
C₁ . V₁ = C₂ . V₂
(2.0 × 10⁻⁶ M) . V₁ = (5.0 × 10⁻⁷ M) . 10.0 mL
V₁ = 2.5 mL
Answer:
0.098 moles
Explanation:
Let y represent the number of moles present
1 mole of Ba(OH)₂ contains 2 moles of OH- ions.
Hence, 0.049 moles of Ba(OH)2 contains y moles of OH- ions.
To get the y moles, we then do cross multiplication
1 mole * y mole = 2 moles * 0.049 mole
y mole = 2 * 0.049 / 1
y mole = 0.098 moles of OH- ions.
1 mole of OH- can neutralize 1 mole of H+
Therefore, 0.098 moles of HNO₃ are present.
Calcium Chloride would have a charge of +2
Hopes this helps :)
Answer:
20.1 g
Explanation:
The solubility indicates how much of the solute the solvent can dissolve. A solution is saturated when the solvent dissolved the maximum that it can do, so, if more solute is added, it will precipitate. The solubility varies with the temperature. Generally, it increases when the temperature increases.
So, if the solubility is 40.3 g/L, and the volume is 500 mL = 0.5 L, the mass of the solute is:
40.3 g/L = m/V
40.3 g/L = m/0.5L
m = 40.3 g/L * 0.5L
m = 20.1 g
Answer:
Gas liquid solid
Explanation:
gases have a weak potential since they have a weak bond between molecules while in solids it's the strongest making them vibrate in a fixed position