Answer:
N = 19.6 N
Explanation:
Given that,
Mass of a block, m = 2000 g
1 kg = 1000 g
It means, 2000 g = 2kg
We need to find the value of normal force on the block on a table. Normal force is balanced by the weight of the block as follows :
N = mg, g is acceleration due to gravity
N = 2 kg × 9.8 m/s²
N = 19.6 N
So, the normal force acting on the block is 19.6 N.
The answer is B because you are not using force or energy as if you were if you were to lift or push something.
Answer:
1400 N
Explanation:
Change in momentum equals impulse which is a product of force and time
Change in momentum is given by m(v-u)
Equating this to impulse formula then
m(v-u)=Ft
Making F the subject of the formula then

Take upward direction as positive then downwards is negative
Substituting m with 0.3 kg, v with 2 m/s, and u with -5 m/s and t with 0.0015 s then

Answer:
511.1 J
Explanation:
We are given that
Mass of wood block=m=3 kg
Vertical distance,h=23 m
Horizontal distance =x=30 m
Distance traveled in downward direction y=40 m
Initial velocity,u=0

Where 






By work energy theorem
Change in kinetic energy=Work done= mgh-W



Hence, the work done due to friction on the block as it slides down the ramp=511.1 J
Image<span> formed by a </span>plane mirror is<span> always </span>virtual<span> which means that the light rays </span>do<span> not actually come from the </span>image but<span> upright and these of the same shape and size are the object it </span>is<span> reflecting.</span>