1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mars2501 [29]
3 years ago
10

Will plane flat mirror will make a real or virtual image? Real Virtual

Physics
1 answer:
Varvara68 [4.7K]3 years ago
4 0
Image<span> formed by a </span>plane mirror is<span> always </span>virtual<span> which means that the light rays </span>do<span> not actually come from the </span>image but<span> upright and these of the same shape and size are the object it </span>is<span> reflecting.</span>
You might be interested in
In which direction does a bag at rest move when a force of 20 newtons is applied from the right? A. in the direction of the appl
-Dominant- [34]

The correct answer is A. In the direction of applied force. This is because acceleration occurs n the direction of applied force according to Newtons second law of motion which states that the acceleration of a body is directly proportional to the applied force and takes place in the direction of force.

5 0
3 years ago
Read 2 more answers
Please help me, this is a physics test.
sweet-ann [11.9K]

Answer:

a = 2 [m/s²]

Explanation:

To be able to solve this problem we must make it clear that the starting point when the time is equal to zero, the velocity is 5 [m/s] and when three seconds have passed the velocity is 11 [m/s], this point is the final point or the final velocity.

We can use the following equation.

v_{f}=v_{o}+a*t\\

where:

Vf = final velocity = 11 [m/s]

Vo = initial velocity = 5 [m/s]

a = acceleration [m/s²]

t = time = 3 [s]

11 = 5 + a*3\\6=3*a\\a= 2[m/s^{2} ]

4 0
3 years ago
A 65.8-kg person throws a 0.0413 kg snowball forward with a ground speed of 32.5 m/s. A second person, with a mass of 58.7 kg, c
guapka [62]

Answer:

v_{1} = 2.490\,\frac{m}{s}

v_{2} = 0.023\,\frac{m}{s}

Explanation:

The statement is described physically by means of the Principle of Momentum Conservation. Let assume that first person moves in the positive direction:

First Person

(65.8\,kg)\cdot (2.51\,\frac{m}{s}) = (65.8\,kg)\cdot v_{1} + (0.0413\,kg)\cdot (32.5\,\frac{m}{s} )

Second Person

(0.0413\,kg)\cdot (32.5\,\frac{m}{s})+(58.7\,kg)\cdot (0\,\frac{m}{s})=(0.0413\,kg+58.7\,kg)\cdot v_{2}

The final velocities of the two people after the snowball is exchanged is:

v_{1} = 2.490\,\frac{m}{s}

v_{2} = 0.023\,\frac{m}{s}

6 0
3 years ago
For Part A, Sebastian decided to use the copper cylinder. How would the magnitude of his q and ∆H compare if he were to redo Par
Vitek1552 [10]

The magnitudes of his q and ∆H for the copper trial would be lower than the aluminum trial.

The given parameters;

  • <em>initial temperature of metals, =  </em>T_m<em />
  • <em>initial temperature of water, = </em>T_i<em> </em>
  • <em>specific heat capacity of copper, </em>C_p<em> = 0.385 J/g.K</em>
  • <em>specific heat capacity of aluminum, </em>C_A = 0.9 J/g.K
  • <em>both metals have equal mass = m</em>

The quantity of heat transferred by each metal is calculated as follows;

Q = mcΔt

<em>For</em><em> copper metal</em><em>, the quantity of heat transferred is calculated as</em>;

Q_p = (m_wc_w + m_pc_p)(T_m - T_i)\\\\Q_p = (T_m - T_i)(m_wc_w ) + (T_m - T_i)(m_pc_p)\\\\Q_p = (T_m - T_i)(m_wc_w ) + 0.385m_p(T_m - T_i)\\\\m_p = m\\\\Q_p = (T_m - T_i)(m_wc_w ) + 0.385m(T_m - T_i)\\\\let \ (T_m - T_i)(m_wc_w )  = Q_i, \ \ \ and \ let \ (T_m- T_i) = \Delta t\\\\Q_p = Q_i + 0.385m\Delta t

<em>The </em><em>change</em><em> in </em><em>heat </em><em>energy for </em><em>copper metal</em>;

\Delta H = Q_p - Q_i\\\\\Delta H = (Q_i + 0.385m \Delta t) - Q_i\\\\\Delta H = 0.385 m \Delta t

<em>For </em><em>aluminum metal</em><em>, the quantity of heat transferred is calculated as</em>;

Q_A = (m_wc_w + m_Ac_A)(T_m - T_i)\\\\Q_A = (T_m -T_i)(m_wc_w) + (T_m -T_i) (m_Ac_A)\\\\let \ (T_m -T_i)(m_wc_w)  = Q_i, \ and \ let (T_m - T_i) = \Delta t\\\\Q_A = Q_i \ + \ m_Ac_A\Delta t\\\\m_A = m\\\\Q_A = Q_i \ + \ 0.9m\Delta t

<em>The </em><em>change</em><em> in </em><em>heat </em><em>energy for </em><em>aluminum metal </em><em>;</em>

\Delta H = Q_A - Q_i\\\\\Delta H = (Q_i + 0.9m\Delta t) - Q_i\\\\\Delta H = 0.9m\Delta t

Thus, we can conclude that the magnitudes of his q and ∆H for the copper trial would be lower than the aluminum trial.

Learn more here:brainly.com/question/15345295

6 0
3 years ago
Given a wire with a cross section of .45cm^2, a length of 3cm, and an internal resistance of 3 ohms, show your 5 steps to solve
Gre4nikov [31]
Resistance ∞ (proportional) length 
resistance ∞ 1/ area

therefore, 
(the constant that we take is known as the resistivity)

resistance =  (resistivity*length )/ area
 resistivity = (resistance * area ) / length
                  = (3 * 45) / 3 =    135/3 = 45 Ωm

in short your answer is 45 Ωm
4 0
3 years ago
Other questions:
  • A patch of ground in direct sunlight will have ______ a patch of ground shaded by clouds.
    8·2 answers
  • The volume of a gas is 200.0 mL at 275 K and 92.1 kPa. Find its volume at STP.
    5·1 answer
  • The _____ law of thermodynamics states that energy can't be created or destroyed. Two natural sources of energy on Earth are the
    6·2 answers
  • Jaiden is writing a report about the structure of the atom. In her report, she says that the atom has three main parts and two s
    9·2 answers
  • Which of the following examples illustrates static friction in action?
    10·2 answers
  • Separating the electron from the proton in a hydrogen atom takes 2.18 ✕ 10−18 j of work. through what electric potential differe
    11·1 answer
  • ILL GIVE BRAINLIEST.
    14·1 answer
  • An atom of sodium-23 (atomic number = 11) has a positive charge of +1. Given this information, how many
    5·1 answer
  • PLZ HELP I DONT GET IT
    5·1 answer
  • Whats the answer to 10a² - 6ab + 10 -2a² - 4ab +15b?​
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!