Bronsted - Lowry acid in the given reaction is NH₄, as it gives H⁺ ion.
<h3>What is Bronsted - Lowry acid?</h3>
According to the theory of Bronsted - Lowry, acids are those substances which gives H⁺ ion or proton in the aqueous medium.
Given chemical reaction is :
NH₄ + HPO₄²⁻ → NH₃ + H₂PO₄⁻
In the above reaction NH₄ is the Bronsted - Lowry acid as it gives H⁺ ion in the reaction and changes to NH₃ which is the conjugate base of NH₄. Whereas HPO₄²⁻ is the Bronsted - Lowry base as it accepts the H⁺ ion to form H₂PO₄⁻ which is the conjugate acid of it.
Hence, option (1) is correct, i.e. NH₄ is the Bronsted - Lowry acid.
To know more about Bronsted - Lowry acid, visit the below link:
brainly.com/question/1435076
The false statement from the above is that: Temporary charge imbalances in the molecules lead to London dispersion forces.
<h3>What are the factors that affect London dispersion forces?</h3>
Generally, the factors which affects the London dispersion forces a dispersion force are as follows:
- Shape of the molecules
- Distance between molecules
- Polarizability of the molecules
However, London dispersion forces simply refers to a sort of temporary attractive force formed when electrons in two adjacent atoms occupy positions that make the atoms form dipoles.
So therefore, temporary charge imbalances in the molecules lead to London dispersion forces is a false statement
Learn more about London dispersion forces:
brainly.com/question/1454795
Data that can be measured, deals with numbers and length,height,area,volume etc.
Answer:
W = -10.3 kJ
Explanation:
During combustion, the system performs work and releases heat. Therefore, the change in internal energy is negative, and the change in enthalpy, which is equal to heat at constant pressure, is also negative. Work is then calculated by rearranging the equation for the change in internal energy:
w=ΔE−qp=−5084.3 kJ−(−5074.0 kJ)
The release of heat is much greater than the work performed by the system on its surroundings. The potential energy stored in the bonds of octane explains why considerably large amounts of energy can be lost by the system during combustion.