Answer:
At birth, there are approximately 1 million eggs; and by the time of puberty, only about 300,000 remain. Of these, only 300 to 400 will be ovulated during a woman's reproductive lifetime. Fertility can drop as a woman ages due to decreasing number and quality of the remaining eggs.
Explanation:
Hope This Helps!!
I think <span>3H2+N2==>2NH3</span>
Given: wavelength of Nitrogen laser (∧) = 337.1 nm = 337.1 X 10^-9 m
We know that, Energy of photon (E) = hc/∧ = hv
where, v = frequency of photon and c = speed of light = 3 X 10^8 m/s
Thus, v = c/∧ = (3 X 10^8)/ (337.1 X 10^-9) = 8.899 X 10^14 s-1.
Answer: F<span>requency of nitrogen laser = </span>8.899 X 10^14 s-1.
Change in temperature affects the rate of reaction since it causes a change in the number of collisions per unit time. These collisions cause the breaking of bonds and formation of new ones giving out new products. An increase in temperature increases the rate of collisions hence increasing the rate of reaction while a decrease in temperature leads to a decrease in the rate of reaction due to the decreased number of collisions per unit time. thus the correct choice for blank A is: B. the number of collisions between molecules and for blank B: decrease.
Is true. Nitrogen gas behaves more like an ideal gas as the
temperature increases. Under normal conditions such as normal pressure and temperature
conditions , most real gases behave qualitatively as an ideal gas. Many
gases such as air , nitrogen , oxygen ,hydrogen , noble gases , and some heavy
gases such as carbon dioxide can be treated as ideal gases within a reasonable tolerance. Generally,
the removal of ideal gas conditions tends to be lower at higher temperatures and lower density (that is at lower pressure ), since the work made by the intermolecular
forces is less important compared to the kinetic energy<span> of the particles, and the size of the molecules is less important
compared to the empty space between them. </span><span>The ideal gas model
tends to fail at lower temperatures or at high pressures, when intermolecular
forces and intermolecular size are important.</span>