Answer: 2. Solution A attains a higher temperature.
Explanation: Specific heat simply means, that amount of heat which is when supplied to a unit mass of a substance will raise its temperature by 1°C.
In the given situation we have equal masses of two solutions A & B, out of which A has lower specific heat which means that a unit mass of solution A requires lesser energy to raise its temperature by 1°C than the solution B.
Since, the masses of both the solutions are same and equal heat is supplied to both, the proportional condition will follow.
<em>We have a formula for such condition,</em>
.....................................(1)
where:
= temperature difference
- c= specific heat of the body
<u>Proving mathematically:</u>
<em>According to the given conditions</em>
- we have equal masses of two solutions A & B, i.e.

- equal heat is supplied to both the solutions, i.e.

- specific heat of solution A,

- specific heat of solution B,

&
are the change in temperatures of the respective solutions.
Now, putting the above values


Which proves that solution A attains a higher temperature than solution B.
So, the first question is: how many meters are 10 nm?
1nm =<span>0.000000001 m.
So 10 nanometers are </span><span>0.00000001 m!
Now, how many milimeter are those?
let's start with meters, 1 meter are 1000 milimeters.
so </span>
0.00000001*1000=0.<span><span>00001</span> m!
now, micrometers .1 micrometer are 1000 nanometers.
so 10 nanometers are 0.01 micrometers! (1 nanometer is 0.001 micrometers)
</span>
Not really the volume of a container is simply length X width X depth so just how big the container unless the water is pressurized by some sort of weight or if the containers air pressure is lowered
A nitrogen atom with 7 protons and 8 neutrons has a mass number of 15amu however on the periodic table the atomic mass for nitrogen is 14.01