Answer:
(35 N - 10 N)/8kg = 3.125 m/s^2
Explanation:
The formula for Force is:
Force = Mass*Acceleration
(Force is equal to Mass times Acceleration)
Since we're told to find the acceleration of the box. We make acceleration the subject of the equation:
Acceleration = Force/Mass
(Acceleration equal to Force divided by Mass)
We know that the force are 35 N forward and 10 N backward, and the weight of the box is 8kg.
= (35 N - 10 N)/8kg
The reason that 35 N minus 10 N is because the 10 N is pushing the box backward.
= 25 N/8kg
= 3.125 m/s^2
Hope it helps :DD
Answer:
35%
Explanation:
The car's engine gives off 65% thermal energy
So only 35 % is converted into mechanical energy .
input heat = Q₁ = 100
output heat = Q₂ = 65
Work output = Q₁ - Q₂ = W
W = 100 - 65 = 35
Efficiency = W / Q₁ X 100
= (35/ 100) X 100
= 35%.
Assume there is a smallest rational integer that has the following form: a/b
Then observe that we can define a/(b+1), which is strictly less than a/b because its divisor is bigger and is rational because it is the product of two numbers. Due to the contradiction created by our original claims that a/b is the smallest rational number that is possible, we might conclude that there is no such thing as the smallest rational number.
There can therefore be no smallest rational number because we may always define a smaller rational number than the one we now possess.
<h3>What is Rational number ?</h3>
Any number that can be expressed as a ratio is considered reasonable. It is therefore possible to represent it as a fraction when the numerator and denominator are both full numbers.
Learn more about Rational number here:
brainly.com/question/12088221
#SPJ4
Answer:
c
Explanation:
the loud noise can reduce the quality of the analog signal
The equation of state for an ideal gas is

where p is the gas pressure, V the volume, n the number of moles, R the gas constant and T the temperature.
The equation of state for the initial condition of the gas is

(1)
While the same equation for the final condition is

(2)
We know that in the final condition, half of the mass of the gas is escaped. This means that the final volume of the gas is half of the initial volume, and also that the final number of moles is half the initial number of moles, so we can write:


If we substitute these relationship inside (1), and we divide (1) by (2), we get

And since the initial temperature of the gas is

, we can find the final temperature of the gas: