Answer:
0.1353 = 13.53% probability that the lifetime exceeds the mean time by more than 1 standard deviations
Step-by-step explanation:
Exponential distribution:
The exponential probability distribution, with mean m, is described by the following equation:

In which
is the decay parameter.
The probability that x is lower or equal to a is given by:

Which has the following solution:

The probability of finding a value higher than x is:

The mean time for the component failure is 2500 hours.
This means that 
What is the probability that the lifetime exceeds the mean time by more than 1 standard deviations?
The standard deviation of the exponential distribution is the same as the mean, so this is P(X > 5000).

0.1353 = 13.53% probability that the lifetime exceeds the mean time by more than 1 standard deviations
Answer:
211.7 Per Day 8.8 Per Hour
Step-by-step explanation:
First you do 1482/7 which gives you an average for each day (211.7)
Then you take 211.7 and divide that by 24 because there are 24 hours in a day and doing so would give you 8.8
Answer:
y=-3
Step-by-step explanation:
The commutative property states that you can invert the order of the terms of a sum:

So, if you start with

Applying the commutative property you'll get

Answer:
The population of bacteria can be expressed as a function of number of days.
Population =
where n is the number of days since the beginning.
Step-by-step explanation:
Number of bacteria on the first day=![\[5 * 2^{0} = 5\]](https://tex.z-dn.net/?f=%5C%5B5%20%2A%202%5E%7B0%7D%20%3D%205%5C%5D)
Number of bacteria on the second day = ![\[5 * 2^{1} = 10\]](https://tex.z-dn.net/?f=%5C%5B5%20%2A%202%5E%7B1%7D%20%3D%2010%5C%5D)
Number of bacteria on the third day = ![\[5*2^{2} = 20\]](https://tex.z-dn.net/?f=%5C%5B5%2A2%5E%7B2%7D%20%3D%2020%5C%5D)
Number of bacteria on the fourth day = ![\[5*2^{3} = 40\]](https://tex.z-dn.net/?f=%5C%5B5%2A2%5E%7B3%7D%20%3D%2040%5C%5D)
As we can see , the number of bacteria on any given day is a function of the number of days n.
This expression can be expressed generally as
where n is the number of days since the beginning.