Answer:
The correct option is: <u>B. 366 torr</u>
Explanation:
Given: <u>On the ground</u>- Initial Volume: V₁ = 8.00 m³, Initial Atmospheric Pressure: P₁= 768 torr;
<u>At 4200 m height</u>- Final Volume: V₂ = 16.80 m³, Final Atmospheric Pressure: P₂ = ?
Amount of gas: n, and Temperature: T = constant
<u>According to the Boyle's Law</u>, for a given amount of gas at constant temperature: P₁ V₁ = P₂ V₂
⇒ P₂ = P₁ V₁ ÷ V₂
⇒ P₂ = [(768 torr) × (8.00 m³)] ÷ (16.80 m³)
⇒ P₂ = 365.71 torr ≈ 366 torr
<u>Therefore, the final air pressure at 4200 m height: P₂ = 366 torr.</u>
Answer:
d) cut the large sized Cu solid into smaller sized pieces
Explanation:
The aim of the question is to select the right condition for that would increases the rate of the reaction.
a) use a large sized piece of the solid Cu
This option is wrong. Reducing the surface area decreases the reaction rate.
b) lower the initial temperature below 25 °C for the liquid reactant, HNO3
Hugher temperatures leads to faster reactions hence this option is wrong.
c) use a 0.5 M HNO3 instead of 2.0 M HNO3
Higher concentration leads to increased rate of reaction. Hence this option is wrong.
d) cut the large sized Cu solid into smaller sized pieces
This leads to an increased surface area of the reactants, which leads to an increased rate of the reaction. This is the correct option.
Answer:
Depends how much water and the temperature of the water. To heat 1 mL of water by 1 degree C 1 cal of energy (4.184 Joules) is required. Assuming that the water is at 25 degrees C, to boil one litre (liter) of water you would require 75,000 cal or 313.8 kJ.
Answer:
r u in high school this is hard
Explanation:
Answer: At the point when space experts take a gander at an article's range, they can decide its arrangement dependent on these frequencies. The most well-known technique stargazers use to decide the sythesis of stars, planets, and different articles is spectroscopy. This spread-out light is known as a range.
Explanation: