Answer:
what does \dfrac mean
Step-by-step explanation:
I'm only in 11th grade and I don't know anything of this cuz I'm dum
Answer:
116 degrees
Step-by-step explanation:
Jason = 142 cm = 1.42 m
Amy = 137 cm = 1.37 m
Joseph = 1397 mm = 1.397 m
From shortest to tallest
I) Amy, Joseph, Jason
The given quadrilateral ABCD is a parallelogram since the opposite sides are of same length AB and DC is 4 and AD and BC is 2.
<u>Step-by-step explanation</u>:
ABCD is a quadrilateral with their opposite sides are congruent (equal).
The both pairs of opposite sides are given as AB = 3 + x
, DC = 4x
, AD = y + 1
, BC = 2y.
- AB and DC are opposite sides and have same measure of length.
- AD and BC are opposite sides and have same measure of length.
<u>To find the length of AB and DC :</u>
AB = DC
3 + x = 4x
Keep x terms on one side and constant on other side.
3 = 4x - x
3 = 3x
x = 1
Substiute x=1 in AB and DC,
AB = 3+1 = 4
DC = 4(1) = 4
<u>To find the length of AD and BC :</u>
AD = BC
y + 1 = 2y
Keep y terms on one side and constant on other side.
2y-y = 1
y = 1
Substiute y=1 in AD and BC,
AD = 1+1 = 2
BC = 2(1) = 2
Therefore, the opposite sides are of same length AB and DC is 4 and AD and BC is 2. The given quadrilateral ABCD is a parallelogram.
For part A, The answer is that the car gets better gas mileage. We can see it from the graph that the number of gallons used is on the X axis, and the distance traveled using those number of gallons is on the Y axis. The easiest way to compare would be to look at the 1 gallon of gas. You can see that you can travel 25 miles on 1 gallon of gas. The truck on the other hand will get you 18 miles per gallon. Imagine putting 1 in for X, the Y value would be 18 if you did this. The graph just shows us a visual way of saying the same thing. To determine how much farther the car with a girl on 8 gallons of gas, you would just multiply 8 by 25 for the number of miles traveled by the car. You would multiply 8 by 18 to find the number of miles traveled for the truck. The answers are 200 miles for the car and 144 miles for the truck. 200-144=56 miles farther for the car.