Answer:
C.)house temperature increases cause the bimetallic coil to expand
Explanation:
A bimetallic strip is used in an air conditioner as a regulator. It is made up of two metals that behaves differently to a change in temperature.
To turn on the air conditoner, the circuit must be complete. When the temperature is high in a room, bimetallic strip responds by expanding and bending to complete the circuit. This puts on the air conditioner and the house begins to cool through exchange of warm and cold air.
When the temperature is too cold, the strip contracts and straightens. This process disconnects the circuit and the air conditioning system ceases to work.






Answer:
Explanation:
From the correct question above:
The reaction can be represented as:

From the above reaction; the ICE table can be represented as:

I (mol/L) 0.086 0.28 0 0
C -4x -3x +2x +6x
E 0.086 - 4x 0.28 - 3x +2x +6x
At equilibrium;
The water vapor = 


![\text{equilibrium constant} ({k_c}) = \dfrac{ [N_2]^2 [H_2O]^6 }{ [[NH_3]^4] [O_2]^3 }](https://tex.z-dn.net/?f=%5Ctext%7Bequilibrium%20constant%7D%20%20%28%7Bk_c%7D%29%20%3D%20%20%5Cdfrac%7B%20%5BN_2%5D%5E2%20%5BH_2O%5D%5E6%20%7D%7B%20%5B%5BNH_3%5D%5E4%5D%20%5BO_2%5D%5E3%20%7D)

Replacing the value of x, we have:


Answer:
saiffjyrkieijdyc digit both of dvur is the answer rcjcufi