which means that the volume increased by 26.4 mL in order to compensate for the decrease in pressure.
Like I said, depends on what your initial volume was, but that's how you think of it.
Hope this helped!
Answer:
The bismuth sample.
Explanation:
The specific heat
of a substance (might not be a metal) is the amount of heat required for heating a unit mass of this substance by unit temperature (e.g.,
.) The formula for specific heat is:
,
where
is the amount of heat supplied.
is the mass of the sample.
is the increase in temperature.
In this question, the value of
(amount of heat supplied to the metal) and
(mass of the metal sample) are the same for all four metals. To find
(change in temperature,) rearrange the equation:
,
.
In other words, the change in temperature of the sample,
can be expressed as a fraction. Additionally, the specific heat of sample,
, is in the denominator of that fraction. Hence, the value of the fraction would be the largest for sample with the smallest specific heat.
Make sure that all the specific heat values are in the same unit. Find the one with the smallest specific heat: bismuth (
.) That sample would have the greatest increase in temperature. Since all six samples started at the same temperature, the bismuth sample would also have the highest final temperature.
Answer:
2L of nitrogen gas will be needed
Explanation:
Based on the following reaction:
N₂ + 3H₂ → 2NH₃
<em>1 mole of nitrogen reacts with 3 moles of hydrogen to produce 2 moles of ammonia.</em>
<em />
If 6L of hydrogen (In a gas, the volume is directly proportional to the moles, Avogadro's law) react, the volume of nitrogen gas required will be:
6L H₂ * (1mol N₂ / 3 moles H₂) =
<h3>2L of nitrogen gas will be needed</h3>
Explanation:
In a double displacement reaction, there is an actual exchange of partners to form new compounds.
The reaction is given as shown below:
AB + CD → AD + CB
One of the following conditions serves as the driving force for a double replacement reaction:
- Formation of an insoluble compound or precipitate
- Formation of water or any other non-ionizing compound
- Liberation of a gaseous product.
They have a mass for the particles
There are no totally elastic collisions
There are intermolecular forces