1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mina [271]
3 years ago
11

C%20ATTACHMENT%7D%7D%7D%7D%7D%7D" id="TexFormula1" title="{\huge{\underline{\small{\mathbb{\pink{REFER \ TO \ THE \ ATTACHMENT}}}}}}" alt="{\huge{\underline{\small{\mathbb{\pink{REFER \ TO \ THE \ ATTACHMENT}}}}}}" align="absmiddle" class="latex-formula">
Note:
Only for best users.
No spams.Spammers stay away.
Need a well explanation not only answer.
No copied links.
​

Mathematics
1 answer:
marusya05 [52]3 years ago
7 0

Answer:

See below

(B) and (C) are correct.

Step-by-step explanation:

We have the following limit

$\lim \limits_{n\rightarrow \infty} \left(\frac{n^n(x+n) \left(x+\dfrac{n}{2} \right)\dots \left(x+\dfrac{n}{n} \right)}{n!(x^2+n^2)\left(x^2+\dfrac{n^2}{4} \right)\dots \left(x^2+\dfrac{n^2}{n^2} \right)}\right)^{\dfrac{x}{n} }, \forall x>0$

I am not sure about methods concerning the quotient, but in this type of question I would try to convert this limit into integration.

Considering the numerator, we have

$(x+n) \left(x+\dfrac{n}{2} \right)\dots \left(x+\dfrac{n}{n} \right) = \prod_{k=1}^n  \left(x+\dfrac{n}{k} \right)$

- I didn't forget about n^n

Considering the denominator, we have

$(x^2+n^2)\left(x^2+\dfrac{n^2}{4} \right)\dots \left(x^2+\dfrac{n^2}{n^2} \right)}\right) = \prod_{k=1}^n  \left(x^2+\dfrac{n^2}{k^2} \right)$

- I didn't forget about n!

Therefore,

$\left(\frac{n^n(x+n) \left(x+\dfrac{n}{2} \right)\dots \left(x+\dfrac{n}{n} \right)}{n!(x^2+n^2)\left(x^2+\dfrac{n^2}{4} \right)\dots \left(x^2+\dfrac{n^2}{n^2} \right)}\right)^{\dfrac{x}{n} } = \left(\dfrac{n^2 \prod_{k=1}^n  \left(x+\dfrac{n}{k} \right)}{ n!\prod_{k=1}^n  \left(x^2+\dfrac{n^2}{k^2} \right)} \right)$

$= \left(\dfrac{n^n}{n!}\prod_{k=1}^n\dfrac{\left(x+\dfrac{n}{k}\right)}{\left(x^2+\dfrac{n^2}{k^2}\right)}\right)^{\dfrac{x}{n}}$

Now we have

$\lim \limits_{n\rightarrow \infty}  \left(\dfrac{n^n}{n!}\prod_{k=1}^n\dfrac{\left(x+\dfrac{n}{k}\right)}{\left(x^2+\dfrac{n^2}{k^2}\right)}\right)^{\dfrac{x}{n}}, \forall x>0$

This is just the notation change so far.

What I want to do here is apply definite integrals using Riemann Integrals (We will write the limit as an definite integral). A nice way to do it is using logarithms. Therefore, we can apply the natural logarithm in both sides.

Now, recall two properties of logarithms:

\boxed{\log_a mn = \log_a m + \log_a n}

\boxed{\log_a m^p = p\log_a m}

\boxed{\log_a  \left(\dfrac{m}{n} \right) = \log_a m- \log_a n}

Thus,

$\ln f(x) = \lim \limits_{n\rightarrow \infty}  \ln \left(\dfrac{n^n}{n!}\prod_{k=1}^n\dfrac{\left(x+\dfrac{n}{k}\right)}{\left(x^2+\dfrac{n^2}{k^2}\right)}\right)^{\dfrac{x}{n}} $

$= \lim \limits_{n\rightarrow \infty}   \dfrac{x}{n}\ln\left(\dfrac{n^n}{n!}\prod_{k=1}^n\dfrac{\left(x+\dfrac{n}{k}\right)}{\left(x^2+\dfrac{n^2}{k^2}\right)}\right) $

$=  \lim \limits_{n\rightarrow \infty}  \dfrac{x}{n} \left[\ln  \left(n^n \prod_{k=1}^n  \left(x+\dfrac{n}{k} \right)  \right)-\ln  \left( n!\prod_{k=1}^n  \left(x^2+\dfrac{n^2}{k^2} \right)  \right) \right]$

$=  \lim \limits_{n\rightarrow \infty}  \dfrac{x}{n} \left[\ln  n^n + \prod_{k=1}^n  \ln \left(x+\dfrac{n}{k}  \right)-\ln  n! -\prod_{k=1}^n  \ln\left(x^2+\dfrac{n^2}{k^2} \right)  \right]$

Considering

$\lim \limits_{n\rightarrow \infty} \frac{x}{n} (\ln n^n - \ln  n! ) = \lim \limits_{n\rightarrow \infty} \frac{x}{n} (n\ln n - \ln  n! )= \lim \limits_{n\rightarrow \infty} \frac{x \cdot\ln\frac{n^n}{n!} }{n} $

Using Stirling's formula

$\dfrac{n^n}{n!}\underset{\infty}{\sim} \dfrac{n^n}{\sqrt{2n \pi}\left(\dfrac{n}{e}\right)^n}=\dfrac{e^n}{\sqrt{2n \pi}}$

then

$\ln\left(\frac{n^n}{n!}\right)\underset{\infty}{=}n\ln\left(e\right)-\frac{1}{2}\ln\left(2n\pi\right)+o\left(1\right)$

$\implies \frac{\ln\left(\frac{n^n}{n!}\right)}{n}=1-\frac{\ln(2n\pi)}{2n}+o\left(1\right)$

This shows our limit equals 1 as $\frac{\log(2\pi n)}{2n} \rightarrow 0$ and \ln(e)=1

Employing a Riemann sum in the main limit, we have

$= \lim \limits_{n\rightarrow \infty}  \dfrac{x}{n} \left[ \sum_{k=1}^n \ln \left(x+\dfrac{n}{k} \right)  - \sum_{k=1}^n\ln \left(x^2+\dfrac{n^2}{k^2} \right)  \right]$

Now dividing the terms inside the parenthesis by \dfrac{n}{k} in \sum_{k=1}^n \ln \left(x+\dfrac{n}{k} \right)

we have

$\sum_{k=1}^n \ln \left(x+\dfrac{n}{k} \right)  = \sum_{k=1}^n \ln \left(\frac{kx}{n} +1\right) $

Now dividing the terms inside the parenthesis by \dfrac{n^2}{k^2} in \sum_{k=1}^n \ln \left(x^2+\dfrac{n^2}{k^2} \right)

we have

$\sum_{k=1}^n \ln \left(x^2+\dfrac{n^2}{k^2} \right)  = \sum_{k=1}^n \ln \left(\frac{(kx)^2}{n^2} +1\right) $

Therefore

$= \frac xn\sum_{k=1}^n\ln\dfrac{z+1}{z^2+1}$

for \dfrac{kx}{n}  = z

Using Riemann Integral,

$\lim \limits_{n\rightarrow \infty}  \int_0^1\ln\frac{z+1}{z^2+1}dz$

From

$\frac{f'(x)}{f(x)}=\ln\frac{z+1}{z^2+1}$

We can see that the function is increasing for , but because of the denominator, it is negative for .

Therefore,

(A) is false because \dfrac{1}{2} < 1

(B) is true because

(C) is true the slope is negative at that point

(D) is false, just consider $\ln\frac{z+1}{z^2+1}$ for z=1 and z=2

You might be interested in
Label from least to greatest 1/3, 5/6, 1/8, 7/12
Shalnov [3]

Answer:

1/8, 1/3, 7/12, 5/6

Step-by-step explanation: why are you asking this? It’s so easy!

first, have all of the fractions to have the same denominator.

1/3 = 16/48

5/6 = 40/48

1/8 = 6/48

7/12 = 28/48

So the order would be 1/8, 1/3, 7/12, and 5/6 from least to greatest.

7 0
3 years ago
Henry is paid $11.25 an hour at his job before he pays taxes. However, 28% is subtracted from his wages earned for taxes. How ma
e-lub [12.9K]
The answer is 40 HOURS. Hope this helps!
6 0
3 years ago
Read 2 more answers
Which property justifies the following statement? If 13x 104 then x 8.
gogolik [260]
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions.

Below are the choices that can be found from other source:

A. division property of equality 
<span>B. Reflexive property of equality </span>
<span>C. Substraction property of equality </span>
<span>D. Multiplication property of equality
</span>
The answer is <span>D. Multiplication property of equality</span>
4 0
3 years ago
What is 0.8% written as a decimal
NikAS [45]
.8% is equal to .008
4 0
4 years ago
Read 2 more answers
What percent of 20 is 2?
lana [24]
2 is 10% of 20.

2/10 = 1/10 = 10%

Hope this helps!
3 0
4 years ago
Other questions:
  • Please answer this!!!!!!!!
    13·1 answer
  • A company offers you a job with an annual salary of $70 000 for the first year and a 5% raise every year after. Approximately ho
    14·2 answers
  • A triangle is shown on the graph below:
    12·1 answer
  • What is the total amount the tree produced that day
    9·2 answers
  • There are _____ min in two fifth of 2 hours
    8·1 answer
  • -6 + k = -14 how to I solve that?
    9·2 answers
  • The hexagon below has been reduced by a scale factor of One-third.
    13·2 answers
  • What is the partial product of 2.3 x 2.6?
    8·1 answer
  • PLEASEEEE SIMPLIFYYYYY!!!!!!!!!<br><br> (3rs^2t^4)^2/21r^2s^3t^11
    6·1 answer
  • Triangle XYZ was reflected across m and then dilated to form a similar triangle. Which triangle represents the image?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!