1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mina [271]
2 years ago
11

C%20ATTACHMENT%7D%7D%7D%7D%7D%7D" id="TexFormula1" title="{\huge{\underline{\small{\mathbb{\pink{REFER \ TO \ THE \ ATTACHMENT}}}}}}" alt="{\huge{\underline{\small{\mathbb{\pink{REFER \ TO \ THE \ ATTACHMENT}}}}}}" align="absmiddle" class="latex-formula">
Note:
Only for best users.
No spams.Spammers stay away.
Need a well explanation not only answer.
No copied links.
​

Mathematics
1 answer:
marusya05 [52]2 years ago
7 0

Answer:

See below

(B) and (C) are correct.

Step-by-step explanation:

We have the following limit

$\lim \limits_{n\rightarrow \infty} \left(\frac{n^n(x+n) \left(x+\dfrac{n}{2} \right)\dots \left(x+\dfrac{n}{n} \right)}{n!(x^2+n^2)\left(x^2+\dfrac{n^2}{4} \right)\dots \left(x^2+\dfrac{n^2}{n^2} \right)}\right)^{\dfrac{x}{n} }, \forall x>0$

I am not sure about methods concerning the quotient, but in this type of question I would try to convert this limit into integration.

Considering the numerator, we have

$(x+n) \left(x+\dfrac{n}{2} \right)\dots \left(x+\dfrac{n}{n} \right) = \prod_{k=1}^n  \left(x+\dfrac{n}{k} \right)$

- I didn't forget about n^n

Considering the denominator, we have

$(x^2+n^2)\left(x^2+\dfrac{n^2}{4} \right)\dots \left(x^2+\dfrac{n^2}{n^2} \right)}\right) = \prod_{k=1}^n  \left(x^2+\dfrac{n^2}{k^2} \right)$

- I didn't forget about n!

Therefore,

$\left(\frac{n^n(x+n) \left(x+\dfrac{n}{2} \right)\dots \left(x+\dfrac{n}{n} \right)}{n!(x^2+n^2)\left(x^2+\dfrac{n^2}{4} \right)\dots \left(x^2+\dfrac{n^2}{n^2} \right)}\right)^{\dfrac{x}{n} } = \left(\dfrac{n^2 \prod_{k=1}^n  \left(x+\dfrac{n}{k} \right)}{ n!\prod_{k=1}^n  \left(x^2+\dfrac{n^2}{k^2} \right)} \right)$

$= \left(\dfrac{n^n}{n!}\prod_{k=1}^n\dfrac{\left(x+\dfrac{n}{k}\right)}{\left(x^2+\dfrac{n^2}{k^2}\right)}\right)^{\dfrac{x}{n}}$

Now we have

$\lim \limits_{n\rightarrow \infty}  \left(\dfrac{n^n}{n!}\prod_{k=1}^n\dfrac{\left(x+\dfrac{n}{k}\right)}{\left(x^2+\dfrac{n^2}{k^2}\right)}\right)^{\dfrac{x}{n}}, \forall x>0$

This is just the notation change so far.

What I want to do here is apply definite integrals using Riemann Integrals (We will write the limit as an definite integral). A nice way to do it is using logarithms. Therefore, we can apply the natural logarithm in both sides.

Now, recall two properties of logarithms:

\boxed{\log_a mn = \log_a m + \log_a n}

\boxed{\log_a m^p = p\log_a m}

\boxed{\log_a  \left(\dfrac{m}{n} \right) = \log_a m- \log_a n}

Thus,

$\ln f(x) = \lim \limits_{n\rightarrow \infty}  \ln \left(\dfrac{n^n}{n!}\prod_{k=1}^n\dfrac{\left(x+\dfrac{n}{k}\right)}{\left(x^2+\dfrac{n^2}{k^2}\right)}\right)^{\dfrac{x}{n}} $

$= \lim \limits_{n\rightarrow \infty}   \dfrac{x}{n}\ln\left(\dfrac{n^n}{n!}\prod_{k=1}^n\dfrac{\left(x+\dfrac{n}{k}\right)}{\left(x^2+\dfrac{n^2}{k^2}\right)}\right) $

$=  \lim \limits_{n\rightarrow \infty}  \dfrac{x}{n} \left[\ln  \left(n^n \prod_{k=1}^n  \left(x+\dfrac{n}{k} \right)  \right)-\ln  \left( n!\prod_{k=1}^n  \left(x^2+\dfrac{n^2}{k^2} \right)  \right) \right]$

$=  \lim \limits_{n\rightarrow \infty}  \dfrac{x}{n} \left[\ln  n^n + \prod_{k=1}^n  \ln \left(x+\dfrac{n}{k}  \right)-\ln  n! -\prod_{k=1}^n  \ln\left(x^2+\dfrac{n^2}{k^2} \right)  \right]$

Considering

$\lim \limits_{n\rightarrow \infty} \frac{x}{n} (\ln n^n - \ln  n! ) = \lim \limits_{n\rightarrow \infty} \frac{x}{n} (n\ln n - \ln  n! )= \lim \limits_{n\rightarrow \infty} \frac{x \cdot\ln\frac{n^n}{n!} }{n} $

Using Stirling's formula

$\dfrac{n^n}{n!}\underset{\infty}{\sim} \dfrac{n^n}{\sqrt{2n \pi}\left(\dfrac{n}{e}\right)^n}=\dfrac{e^n}{\sqrt{2n \pi}}$

then

$\ln\left(\frac{n^n}{n!}\right)\underset{\infty}{=}n\ln\left(e\right)-\frac{1}{2}\ln\left(2n\pi\right)+o\left(1\right)$

$\implies \frac{\ln\left(\frac{n^n}{n!}\right)}{n}=1-\frac{\ln(2n\pi)}{2n}+o\left(1\right)$

This shows our limit equals 1 as $\frac{\log(2\pi n)}{2n} \rightarrow 0$ and \ln(e)=1

Employing a Riemann sum in the main limit, we have

$= \lim \limits_{n\rightarrow \infty}  \dfrac{x}{n} \left[ \sum_{k=1}^n \ln \left(x+\dfrac{n}{k} \right)  - \sum_{k=1}^n\ln \left(x^2+\dfrac{n^2}{k^2} \right)  \right]$

Now dividing the terms inside the parenthesis by \dfrac{n}{k} in \sum_{k=1}^n \ln \left(x+\dfrac{n}{k} \right)

we have

$\sum_{k=1}^n \ln \left(x+\dfrac{n}{k} \right)  = \sum_{k=1}^n \ln \left(\frac{kx}{n} +1\right) $

Now dividing the terms inside the parenthesis by \dfrac{n^2}{k^2} in \sum_{k=1}^n \ln \left(x^2+\dfrac{n^2}{k^2} \right)

we have

$\sum_{k=1}^n \ln \left(x^2+\dfrac{n^2}{k^2} \right)  = \sum_{k=1}^n \ln \left(\frac{(kx)^2}{n^2} +1\right) $

Therefore

$= \frac xn\sum_{k=1}^n\ln\dfrac{z+1}{z^2+1}$

for \dfrac{kx}{n}  = z

Using Riemann Integral,

$\lim \limits_{n\rightarrow \infty}  \int_0^1\ln\frac{z+1}{z^2+1}dz$

From

$\frac{f'(x)}{f(x)}=\ln\frac{z+1}{z^2+1}$

We can see that the function is increasing for , but because of the denominator, it is negative for .

Therefore,

(A) is false because \dfrac{1}{2} < 1

(B) is true because

(C) is true the slope is negative at that point

(D) is false, just consider $\ln\frac{z+1}{z^2+1}$ for z=1 and z=2

You might be interested in
The person pays Social Security 6.2 percent of the first $90,000. Medicare is 1.45 percent of all income. Use the tax tables for
12345 [234]

Answer:

6.2

Step-by-step explanation

I gotta head dont I??

7 0
2 years ago
Penny received an unexpected $5,000.00 gift from a distant relative. She invests it
leva [86]

Answer:

$9,000.00 is her original investment worth in 10 yrs.

5000 x 1.08 ^10 = 10794.6249864

Then subtract -500000 = 5794.62498636

Step-by-step explanation:

Why, because the first year is proved 5000 x 0.08 = 400

= 400 year 1 but cna keep only if stays in investment for 10 years

400 x 10 = 4000 interest on investment

5000+ 4000 = $9,000.00 SI

+ 1,794.62 Interest on interest if applies (this is called CI) and makes $10794.62

3 0
3 years ago
A regular paper clip is 1 1/4 inches long, and a jumbo paper clip is 1 7/8 inches long. How many times longer is the jumbo paper
gregori [183]
It is 6.4 times longer
8 0
3 years ago
Enter the correct value so that each expression is a perfect square trinomial
myrzilka [38]

Answer:

Step-by-step explanation:

1). x² - 10x + a²

  By using the formula of (a - b)² = a² - 2ab + b²

  x² - 2(5)x + a²

  Therefore, for a perfect square of the expression a should be equal to 5.

  Therefore, (x² - 10x + 25) will be the answer.

2). x² + 2ax + 36

  = x² + 2(a)x + 6²

  For a perfect square of the given expression value of a should be 6.

   x² + 2(a)x + 6² = x² + 2(6)x + 6²

                           = (x + 6)²

  Therefore, x² + 12x + 36 will be the answer.

3). x^{2}+\frac{1}{2}x+a^2

    x^{2}+2(\frac{1}{4})x+a^2

   To make this expression a perfect square,

   a² = (\frac{1}{4})^2

   x^{2}+2(\frac{1}{4})x+(\frac{1}{4})^2 = (x+\frac{1}{4})^2

  Therefore, the missing number will be \frac{1}{16}.

5 0
3 years ago
6x + 3y = 18
Inessa [10]

Answer:

I HAVE 2 OPTIONS

A OR B

I THINK

8 0
3 years ago
Other questions:
  • Plz helpppp I don’t GET THIS
    8·2 answers
  • You plan to invest $350 in a growth fund that has a rate of 1.5% compounded quarterly. How much money will this investment be wo
    10·2 answers
  • Which number is an irrational number?
    12·1 answer
  • 1 1/2 gallons to cups
    15·1 answer
  • If a family spend $840 in a year on rent how much do they spend in a manth
    9·1 answer
  • Which equation can be used to solve for x in the following diagram? pls help
    15·2 answers
  • Help with question number one please
    10·1 answer
  • Need help question #2. Show steps please
    6·1 answer
  • What is y + 2y + 6 (2y-4) - 5y simplified
    15·2 answers
  • What does a 360 degrees rotation look like?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!