1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mina [271]
2 years ago
11

C%20ATTACHMENT%7D%7D%7D%7D%7D%7D" id="TexFormula1" title="{\huge{\underline{\small{\mathbb{\pink{REFER \ TO \ THE \ ATTACHMENT}}}}}}" alt="{\huge{\underline{\small{\mathbb{\pink{REFER \ TO \ THE \ ATTACHMENT}}}}}}" align="absmiddle" class="latex-formula">
Note:
Only for best users.
No spams.Spammers stay away.
Need a well explanation not only answer.
No copied links.
​

Mathematics
1 answer:
marusya05 [52]2 years ago
7 0

Answer:

See below

(B) and (C) are correct.

Step-by-step explanation:

We have the following limit

$\lim \limits_{n\rightarrow \infty} \left(\frac{n^n(x+n) \left(x+\dfrac{n}{2} \right)\dots \left(x+\dfrac{n}{n} \right)}{n!(x^2+n^2)\left(x^2+\dfrac{n^2}{4} \right)\dots \left(x^2+\dfrac{n^2}{n^2} \right)}\right)^{\dfrac{x}{n} }, \forall x>0$

I am not sure about methods concerning the quotient, but in this type of question I would try to convert this limit into integration.

Considering the numerator, we have

$(x+n) \left(x+\dfrac{n}{2} \right)\dots \left(x+\dfrac{n}{n} \right) = \prod_{k=1}^n  \left(x+\dfrac{n}{k} \right)$

- I didn't forget about n^n

Considering the denominator, we have

$(x^2+n^2)\left(x^2+\dfrac{n^2}{4} \right)\dots \left(x^2+\dfrac{n^2}{n^2} \right)}\right) = \prod_{k=1}^n  \left(x^2+\dfrac{n^2}{k^2} \right)$

- I didn't forget about n!

Therefore,

$\left(\frac{n^n(x+n) \left(x+\dfrac{n}{2} \right)\dots \left(x+\dfrac{n}{n} \right)}{n!(x^2+n^2)\left(x^2+\dfrac{n^2}{4} \right)\dots \left(x^2+\dfrac{n^2}{n^2} \right)}\right)^{\dfrac{x}{n} } = \left(\dfrac{n^2 \prod_{k=1}^n  \left(x+\dfrac{n}{k} \right)}{ n!\prod_{k=1}^n  \left(x^2+\dfrac{n^2}{k^2} \right)} \right)$

$= \left(\dfrac{n^n}{n!}\prod_{k=1}^n\dfrac{\left(x+\dfrac{n}{k}\right)}{\left(x^2+\dfrac{n^2}{k^2}\right)}\right)^{\dfrac{x}{n}}$

Now we have

$\lim \limits_{n\rightarrow \infty}  \left(\dfrac{n^n}{n!}\prod_{k=1}^n\dfrac{\left(x+\dfrac{n}{k}\right)}{\left(x^2+\dfrac{n^2}{k^2}\right)}\right)^{\dfrac{x}{n}}, \forall x>0$

This is just the notation change so far.

What I want to do here is apply definite integrals using Riemann Integrals (We will write the limit as an definite integral). A nice way to do it is using logarithms. Therefore, we can apply the natural logarithm in both sides.

Now, recall two properties of logarithms:

\boxed{\log_a mn = \log_a m + \log_a n}

\boxed{\log_a m^p = p\log_a m}

\boxed{\log_a  \left(\dfrac{m}{n} \right) = \log_a m- \log_a n}

Thus,

$\ln f(x) = \lim \limits_{n\rightarrow \infty}  \ln \left(\dfrac{n^n}{n!}\prod_{k=1}^n\dfrac{\left(x+\dfrac{n}{k}\right)}{\left(x^2+\dfrac{n^2}{k^2}\right)}\right)^{\dfrac{x}{n}} $

$= \lim \limits_{n\rightarrow \infty}   \dfrac{x}{n}\ln\left(\dfrac{n^n}{n!}\prod_{k=1}^n\dfrac{\left(x+\dfrac{n}{k}\right)}{\left(x^2+\dfrac{n^2}{k^2}\right)}\right) $

$=  \lim \limits_{n\rightarrow \infty}  \dfrac{x}{n} \left[\ln  \left(n^n \prod_{k=1}^n  \left(x+\dfrac{n}{k} \right)  \right)-\ln  \left( n!\prod_{k=1}^n  \left(x^2+\dfrac{n^2}{k^2} \right)  \right) \right]$

$=  \lim \limits_{n\rightarrow \infty}  \dfrac{x}{n} \left[\ln  n^n + \prod_{k=1}^n  \ln \left(x+\dfrac{n}{k}  \right)-\ln  n! -\prod_{k=1}^n  \ln\left(x^2+\dfrac{n^2}{k^2} \right)  \right]$

Considering

$\lim \limits_{n\rightarrow \infty} \frac{x}{n} (\ln n^n - \ln  n! ) = \lim \limits_{n\rightarrow \infty} \frac{x}{n} (n\ln n - \ln  n! )= \lim \limits_{n\rightarrow \infty} \frac{x \cdot\ln\frac{n^n}{n!} }{n} $

Using Stirling's formula

$\dfrac{n^n}{n!}\underset{\infty}{\sim} \dfrac{n^n}{\sqrt{2n \pi}\left(\dfrac{n}{e}\right)^n}=\dfrac{e^n}{\sqrt{2n \pi}}$

then

$\ln\left(\frac{n^n}{n!}\right)\underset{\infty}{=}n\ln\left(e\right)-\frac{1}{2}\ln\left(2n\pi\right)+o\left(1\right)$

$\implies \frac{\ln\left(\frac{n^n}{n!}\right)}{n}=1-\frac{\ln(2n\pi)}{2n}+o\left(1\right)$

This shows our limit equals 1 as $\frac{\log(2\pi n)}{2n} \rightarrow 0$ and \ln(e)=1

Employing a Riemann sum in the main limit, we have

$= \lim \limits_{n\rightarrow \infty}  \dfrac{x}{n} \left[ \sum_{k=1}^n \ln \left(x+\dfrac{n}{k} \right)  - \sum_{k=1}^n\ln \left(x^2+\dfrac{n^2}{k^2} \right)  \right]$

Now dividing the terms inside the parenthesis by \dfrac{n}{k} in \sum_{k=1}^n \ln \left(x+\dfrac{n}{k} \right)

we have

$\sum_{k=1}^n \ln \left(x+\dfrac{n}{k} \right)  = \sum_{k=1}^n \ln \left(\frac{kx}{n} +1\right) $

Now dividing the terms inside the parenthesis by \dfrac{n^2}{k^2} in \sum_{k=1}^n \ln \left(x^2+\dfrac{n^2}{k^2} \right)

we have

$\sum_{k=1}^n \ln \left(x^2+\dfrac{n^2}{k^2} \right)  = \sum_{k=1}^n \ln \left(\frac{(kx)^2}{n^2} +1\right) $

Therefore

$= \frac xn\sum_{k=1}^n\ln\dfrac{z+1}{z^2+1}$

for \dfrac{kx}{n}  = z

Using Riemann Integral,

$\lim \limits_{n\rightarrow \infty}  \int_0^1\ln\frac{z+1}{z^2+1}dz$

From

$\frac{f'(x)}{f(x)}=\ln\frac{z+1}{z^2+1}$

We can see that the function is increasing for , but because of the denominator, it is negative for .

Therefore,

(A) is false because \dfrac{1}{2} < 1

(B) is true because

(C) is true the slope is negative at that point

(D) is false, just consider $\ln\frac{z+1}{z^2+1}$ for z=1 and z=2

You might be interested in
FeCl3 + O2  Fe2O3 + Cl2 BALANCE the equation
Tomtit [17]
4 miles of FeCl3 x (6 Cl2 / 4 FeCl3)=6 moles Cl2 ( Yahoo )
3 0
2 years ago
Hello, happy Friday, I am just here with some geometry questions.
Hatshy [7]

Answer:

B

Step-by-step explanation:

So far, we know that:

∠D = ∠J.

And that:

DE:JK = 14:7 = 2:1

So, to prove that ΔDEF ~ ΔJKL by SAS, DF must be similar to JL, as those are the sides between the angle.  

So:

DF:JL = 2:1.

Our answer is B.

4 0
2 years ago
14-2(x+8)=5x-(3x-34)
Scilla [17]

Answer:30=-34


Step-by-step explanation:

First you distribute so 2×X is 2X

2×8 is 16 then you do the other side but you put a one in front of the- so it goes 1 times 3x is 3x and you turn the minus into a plus sign and turn the positive 34 into a negative 34 so -34× 1 is -34 then write that out to look like 14-2X+16= 5X -3X + -34 then you add or subtract the commons which is 14+16= 30 and 5X-3X=2X so now your equation is 30-2x=2X+(-34) then you want to get your X on the same side so you subtract 2X from the right side and the left side then your left 30=-34

4 0
3 years ago
Help! Please:) Amd Thank you!!!
Mrrafil [7]
They get 2/3 because 2 divided by 3=2/3.
8 0
3 years ago
Think About a Plan Write an indirect proof.
Alekssandra [29.7K]

1) Either \ell \parallel p or \ell ∦ p (only two possibilities)

2) Assume \ell \parallel p (one of two possibilities)

3) \angle 1 \cong \angle 2 (if two parallel lines are cut by a transversal, the corresponding angles are congruent)

4) But \angle 1 is not congruent to \angle 2 (given)

5) So \ell ∦ p (only other possibility)

8 0
1 year ago
Other questions:
  • Count by ones from 368 to 500 change fot a larger unit when necessary
    9·1 answer
  • Solve.
    15·2 answers
  • WOUIIDU<br> Round the following<br> numbers to the nearest 10.<br> 296 →<br> 814 →<br> 56 4 →
    11·1 answer
  • What is 14 dividend by 12
    13·1 answer
  • 24/52 simplify fraction
    9·1 answer
  • Multiply.<br><br> (3x + 8)(3x − 8) = _______
    9·1 answer
  • What is the slope of a line perpendicular to the line whose equation is x-y=6x. Fully reduce your answer.
    8·2 answers
  • Please help!
    15·1 answer
  • if your good at maths this for you, lets see if u get em correct, in return I'll brainlist you/ give u 5 star n a like! ​
    8·1 answer
  • WAaAa im very confused, help
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!