1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Cerrena [4.2K]
3 years ago
11

Solve for x. 8x-6+11+12x=180

Mathematics
2 answers:
algol133 years ago
6 0

Answer:

x=8.75

Step-by-step explanation:

8x-6+11+12x=180~(Given)\\\\20x+5=180~(Simplify)\\\\20x+5-5=180-5~(Subtract~5~on~both~sides)\\\\20x=175~(Simplify)\\\\\frac{20x}{20}=\frac{175}{20}~(Divide~20~on~both~sides)\\\\x=8.75

denis23 [38]3 years ago
5 0

Answer:

x=35/4

Step-by-step explanation:

20x +5=180

20x=180-5

20x=175

x=175/20=35/4

You might be interested in
(3x-7)+(4x-8) what is the sum of this question pls
Papessa [141]

Answer:

17x-15 ................... I needed to put dots so I can have 20 characters

8 0
3 years ago
Read 2 more answers
PLEASE help me with the answers!!!
jasenka [17]
100=1,478,300
1000=1,478,000
10,000=1,470,000
5 0
3 years ago
Read 2 more answers
Solve for x<br> −4(x−7)=36
Ipatiy [6.2K]
-4(x-7)=36
-4x+28=36
-4x=8
x=-2
5 0
3 years ago
Read 2 more answers
A room is 5 meters by meters . How many square 14-inch tiles will it take to floor the room ? I meant to say a room is 5 meters
lesya [120]

Given:

Room is 5 meters by 8 meters.

Measure of squaree tiles is 14-inch.

\begin{gathered} \text{Area of the room=5}\times8 \\ \text{Area of the room=}40m^2 \end{gathered}1m^2=1550inch^2\begin{gathered} \text{Area of each tile=14}\times14 \\ \text{Area of each tile=}196inch^2 \end{gathered}\begin{gathered} \text{Number of tiles to floor the room=}\frac{40\times1550}{196} \\ \text{Number of tiles to floor the room}=316.3265 \end{gathered}

Approximately 316 tiles are required to floor the room.

8 0
1 year ago
Six sophomores and 14 freshmen are competing for two alternate positions on the debate team. Which expression represents the pro
Elanso [62]

Answer:

<em>Choose the first alternative</em>

\displaystyle P=\frac{_{1}^{6}\textrm{C}\ _{1}^{5}\textrm{C}}{_{2}^{20}\textrm{C}}

Step-by-step explanation:

<u>Probabilities</u>

The requested probability can be computed as the ratio between the number of ways to choose two sophomores in alternate positions (N_s) and the total number of possible choices (N_t), i.e.

\displaystyle P=\frac{N_s}{N_t}

There are 6 sophomores and 14 freshmen to choose from each separate set. There are 20 students in total

We'll assume the positions of the selections are NOT significative, i.e. student A/student B is the same as student B/student A.

To choose 2 sophomores out of the 6 available, the first position has 6 elements to choose from, the second has now only 5

_{1}^{6}\textrm{C}\ _{1}^{5}\textrm{C} \text{ ways to do it}

The total number of possible choices is

_{2}^{20}\textrm{C} \text{ ways to do it}

The probability is then

\boxed{\displaystyle P=\frac{_{1}^{6}\textrm{C}\ _{1}^{5}\textrm{C}}{_{2}^{20}\textrm{C}}}

Choose the first alternative

7 0
3 years ago
Read 2 more answers
Other questions:
  • on Saturday Jeff used 2 quarts 1 cup of water from a full gallon to replace a water that leaked from his fish tank on Sunday he
    9·1 answer
  • How do I put 8 and one half into fraction form?
    11·2 answers
  • A bag contains tickets numbered 1 through 5. Use the probability distribution to determine the probability of drawing an even nu
    13·1 answer
  • Which expression is equal to 4^5 x 4^-7 divided by 4^-2?<br> help asap
    12·1 answer
  • Find the mean proportional for each pair. SHOW YOUR SOLUTION<br><br> 1. 6, 24
    10·1 answer
  • Help me is this plis​
    11·1 answer
  • Questions in picture
    6·1 answer
  • Could the value of x in the triangle below be 4, 6, 9, or 10?<br>brainliest
    6·2 answers
  • What is the value of x?<br> Enter your answer in the box
    11·2 answers
  • Find the volume of the cone
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!