K = 1/2 m x v^2
m = mass on the cart
V = velocity imparted to the cart
KA = 1/2 mA x vA^2.......................(1)
KB = 1/2 mB x vB^2........................(2)
Diving equation 1 by equation 2, we get -
KA/KB = mA/mB
= 2
KA = 2 x KB
Option A is correct
Answer:
Inference
Explanation:
An inference involves the application of logic to progress from a premise to a conclusion or logical consequence on the basis of the evidence or known fact. Inference is a process of thought that be divided into a deduction and an induction aspect.
In the given question Halley, by standing outside was able to deduce the sound of thunder she is then able by inductive reasoning from the fact that storms are usually preceded by and accompany lightening, conclude that there is a storm coming.
Answer:
can't see anything sorry can't help
Hello here
It means that a person has the ability to describe, explain, and predict natural phenomena.
Answer:
She can swing 1.0 m high.
Explanation:
Hi there!
The mechanical energy of Jane (ME) can be calculated by adding her gravitational potential (PE) plus her kinetic energy (KE).
The kinetic energy is calculated as follows:
KE = 1/2 · m · v²
And the potential energy:
PE = m · g · h
Where:
m = mass of Jane.
v = velocity.
g = acceleration due to gravity (9.8 m/s²).
h = height.
Then:
ME = KE + PE
Initially, Jane is running on the surface on which we assume that the gravitational potential energy of Jane is zero (the height is zero). Then:
ME = KE + PE (PE = 0)
ME = KE
ME = 1/2 · m · (4.5 m/s)²
ME = m · 10.125 m²/s²
When Jane reaches the maximum height, its velocity is zero (all the kinetic energy was converted into potential energy). Then, the mechanical energy will be:
ME = KE + PE (KE = 0)
ME = PE
ME = m · 9.8 m/s² · h
Then, equallizing both expressions of ME and solving for h:
m · 10.125 m²/s² = m · 9.8 m/s² · h
10.125 m²/s² / 9.8 m/s² = h
h = 1.0 m
She can swing 1.0 m high (if we neglect dissipative forces such as air resistance).