(a) 392 N/m
Hook's law states that:
(1)
where
F is the force exerted on the spring
k is the spring constant
is the stretching/compression of the spring
In this problem:
- The force exerted on the spring is equal to the weight of the block attached to the spring:

- The stretching of the spring is

Solving eq.(1) for k, we find the spring constant:

(b) 17.5 cm
If a block of m = 3.0 kg is attached to the spring, the new force applied is

And so, the stretch of the spring is

And since the initial lenght of the spring is

The final length will be

Maybe around 350 years, depending on the carbon cycle and the time taken through steps.
Recall the definition of the cross product with respect to the unit vectors:
i × i = j × j = k × k = 0
i × j = k
j × k = i
k × i = j
and that the product is anticommutative, so that for any two vectors u and v, we have u × v = - (v × u). (This essentially takes care of part (b).)
Now, given a = 8i + j - 2k and b = 5i - 3j + k, we have
a × b = (8i + j - 2k) × (5i - 3j + k)
a × b = 40 (i × i) + 5 (j × i) - 10 (k × i)
… … … … - 24 (i × j) - 3 (j × j) + 6 (k × j)
… … … … + 8 (i × k) + (j × k) - 2 (k × k)
a × b = - 5 (i × j) - 10 (k × i) - 24 (i × j) - 6 (j × k) - 8 (k × i) + (j × k)
a × b = - 5k - 10j - 24k - 6i - 8j + i
a × b = -5i - 18j - 29k
Answer:
when you are pushing the pedal you are causing the pedal to move done and then you will move 100cm
Explanation:
10 cm= 100 cm moved so when you move you will move because you are timeing the 10 by 100 to get the spped
Answer:
1.) 274.5v
2.) 206.8v
Explanation:
1.) Given that In one part of the lab activities, students connected a 2.50 µF capacitor to a 746 V power source, whilst connected a second 6.80 µF capacitor to a 562 V source.
The potential difference and charge across EACH capacitor will be
V = Voe
Where Vo = initial voltage
e = natural logarithm = 2.718
For the first capacitor 2.50 µF,
V = Vo × 2.718
746 = Vo × 2.718
Vo = 746/2.718
Vo = 274.5v
To calculate the charge, use the below formula.
Q = CV
Q = 2.5 × 10^-6 × 274.5
Q = 6.86 × 10^-4 C
For the second capacitor 6.80 µF
V = Voe
562 = Vo × 2.718
Vo = 562/2.718
Vo = 206.77v
The charge on it will be
Q = CV
Q = 6.8 × 10^-6 × 206.77
Q = 1.41 × 10^-3 C
B.) Using the formula V = Voe again
165 = Vo × 2.718
Vo = 165 /2.718
Vo = 60.71v
Q = C × 60.71
Q = C