Answer:
she added more force, she went down a hill with more friction.
Explanation:
either one of them
Answer:
Period of one vibration = 0.00215 second (Approx.)
Wavelength {Is speed of sound is 343 m/s] = 0.736 m (Approx.)
Explanation:
Given:
Frequency of wave = 466 Hz
Find:
Period of one vibration
Wavelength {Is speed of sound is 343 m/s]
Computation:
Period of one vibration = 1/F
Period of one vibration = 1 / 466
Period of one vibration = 0.00215 second (Approx.)
Wavelength = Velocity / Frequency
Wavelength {Is speed of sound is 343 m/s] = 343 / 466
Wavelength {Is speed of sound is 343 m/s] = 0.736 m (Approx.)
Point C would the greatest
Answer:
87.5 m/s
Explanation:
The speed of a wave is given by

where
v is the wave speed
is the wavelength
f is the frequency
In this problem, we have
is the frequency
is the wavelength
Substituting into the equation, we find

The weight should be shared between the two string equally. Therefore, tension in each string, T is;
T = 120 N/2 = 60 N