1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Brilliant_brown [7]
3 years ago
9

Atoms with electronegativity differences below 0.4 generally form covalentbonds. True or False​

Physics
2 answers:
STALIN [3.7K]3 years ago
7 0

Answer:

True

Explanation:

Electronegativity difference of less than 0.4 characterized covalent bonds. For two atoms with an electronegativity difference of between 0.4 and 2.0, a polar covalent bond is formed-one that is neither ionic nor totally covalent.

Whitepunk [10]3 years ago
6 0

Answer:true :) apex

Explanation:

You might be interested in
Consider a cyclotron in which a beam of particles of positive charge q and mass m is moving along a circular path restricted by
Ulleksa [173]

A) v=\sqrt{\frac{2qV}{m}}

B) r=\frac{mv}{qB}

C) T=\frac{2\pi m}{qB}

D) \omega=\frac{qB}{m}

E) r=\frac{\sqrt{2mK}}{qB}

Explanation:

A)

When the particle is accelerated by a potential difference V, the change (decrease) in electric potential energy of the particle is given by:

\Delta U = qV

where

q is the charge of the particle (positive)

On the other hand, the change (increase) in the kinetic energy of the particle is (assuming it starts from rest):

\Delta K=\frac{1}{2}mv^2

where

m is the mass of the particle

v is its final speed

According to the law of conservation of energy, the change (decrease) in electric potential energy is equal to the increase in kinetic energy, so:

qV=\frac{1}{2}mv^2

And solving for v, we find the speed v at which the particle enters the cyclotron:

v=\sqrt{\frac{2qV}{m}}

B)

When the particle enters the region of magnetic field in the cyclotron, the magnetic force acting on the particle (acting perpendicular to the motion of the particle) is

F=qvB

where B is the strength of the magnetic field.

This force acts as centripetal force, so we can write:

F=m\frac{v^2}{r}

where r is the radius of the orbit.

Since the two forces are equal, we can equate them:

qvB=m\frac{v^2}{r}

And solving for r, we find the radius of the orbit:

r=\frac{mv}{qB} (1)

C)

The period of revolution of a particle in circular motion is the time taken by the particle to complete one revolution.

It can be calculated as the ratio between the length of the circumference (2\pi r) and the velocity of the particle (v):

T=\frac{2\pi r}{v} (2)

From eq.(1), we can rewrite the velocity of the particle as

v=\frac{qBr}{m}

Substituting into(2), we can rewrite the period of revolution of the particle as:

T=\frac{2\pi r}{(\frac{qBr}{m})}=\frac{2\pi m}{qB}

And we see that this period is indepedent on the velocity.

D)

The angular frequency of a particle in circular motion is related to the period by the formula

\omega=\frac{2\pi}{T} (3)

where T is the period.

The period has been found in part C:

T=\frac{2\pi m}{qB}

Therefore, substituting into (3), we find an expression for the angular frequency of motion:

\omega=\frac{2\pi}{(\frac{2\pi m}{qB})}=\frac{qB}{m}

And we see that also the angular frequency does not depend on the velocity.

E)

For this part, we use again the relationship found in part B:

v=\frac{qBr}{m}

which can be rewritten as

r=\frac{mv}{qB} (4)

The kinetic energy of the particle is written as

K=\frac{1}{2}mv^2

So, from this we can find another expression for the velocity:

v=\sqrt{\frac{2K}{m}}

And substitutin into (4), we find:

r=\frac{\sqrt{2mK}}{qB}

So, this is the radius of the cyclotron that we must have in order to accelerate the particles at a kinetic energy of K.

Note that for a cyclotron, the acceleration of the particles is achevied in the gap between the dees, where an electric field is applied (in fact, the magnetic field does zero work on the particle, so it does not provide acceleration).

6 0
4 years ago
What if The rotational speed of Earth increased ?
dsp73

Answer:

This would happen.

Explanation:

If the earth’s rotation speed increases then the weight of the body decreases. This is because you see a moving body on the rotating earth’s surface itself is in the reference frame. So when the earth rotates, the centripetal force acts towards the centre of rotation.

4 0
3 years ago
Which phrase best describes a metallic bond?
aalyn [17]
Metallic bonding<span> is the force of attraction between valence electrons and the metal ions. It is the sharing of many detached electrons between many positive ions, 
 
                           Hopefully this can help you understand

</span>
6 0
3 years ago
Read 2 more answers
For the following types of electromagnetic radiation, how do the wavelength, frequency, and photon energy change as one goes fro
KIM [24]

Answer:

Wavelength, frequency and the photon energy changes as the one goes across the ranges of the electro-magnetic radiations.

Explanation:

Electro-magnetic radiations may be defined as the form of energy that is radiated or given by the electro-magnetic radiations. The visible light that we can see is the one of the electro-magnetic radiations. Other forms are the radio waves, gamma waves, UV rays, infrared radiations, etc.

The wavelength of the radiations decreases as we go from a. radio waves -- b. infrared radiation -- c. visible light -- d. ultraviolet radiation -- e. gamma radiation.

The frequency of the radiations increases when we move from a. radio waves -- b. infrared radiation -- c. visible light -- d. ultraviolet radiation -- e. gamma radiation.

The photon energy of the radiations increases when we move from a. radio waves -- b. infrared radiation -- c. visible light -- d. ultraviolet radiation -- e. gamma radiation.

5 0
3 years ago
Red blood cells can be modeled as spheres of 6.53 μm diameter with −2.55×10−12 C excess charge uniformly distributed over the su
yKpoI14uk [10]

Complete Question

Red blood cells can be modeled as spheres of 6.53 μm diameter with −2.55×10−12 C excess charge uniformly distributed over the surface. Find the electric field at the following locations, with radially outward defined as the positive direction and radially inward defined as the negative direction. The permittivity of free space ????0 is 8.85×10−12 C/(V⋅m). What is the electric field

E⃗ 1 inside the cell at a distance of 3.05 μm from the center?

E⃗ 2 Just inside the surface of the cell

E⃗ 3 Just outside the surface of the cell

E⃗ 4 At a point outside the cell 3.05 μm from the surface

Answer:

E⃗ 1

      0 V/m

E⃗ 2

      0 V/m

E⃗ 3

         E_3 =  2.153 *10^{9} \  V/m

E⃗ 4

E_4 =  5.754 *10^ {8} \  V/m

Explanation:

From the question we are told that

The diameter is d =  6.53 \mu m  = 6.53*10^{-6}\  m

The charge is Q =  -.2.55 *10^{-12} \  C

The permittivity of free space is \epsilon_o  =  8.85* 10^{-12}\  C / V.m

The distance considered is d =  3.05 \mu m  =  3.05 *10^{-6} \ m

Generally the electric field inside the cell at a distance of 3.05 μm from the center is

0 V/m

This because there is no electric field felt inside the cell according Gauss the cell is taken as a point charge

Generally the electric field just inside the surface of the cell is 0 V/m

This because there is no electric field felt inside the cell according Gauss the cell is taken as a point charge

Generally the electric field just outside the cell is mathematically represented as

E_3 =  \frac{ k  *  |Q|}{ r^2 }

Here k is the coulomb constant with value

k  =   9*10^{9}\ kg\cdot m^3\cdot s^{-4} \cdot A^{-2}

r is the radius of the sphere which is mathematically as

r =  \frac{d}{2} =   \frac{6.53*10^{-6}}{2}  = 3.265 *10^{-6} \  m

E_3 =  \frac{ 9*10^{9}  *  |-2.55 *10^{-12} |}{ [3.265 *10^{-6} ]^2 }

E_3 =  2.153 *10^{9} \  V/m

Generally the electric field at a point outside the cell 3.05 μm from the surface is mathematically represented as

E_4 =  \frac{ k  *  |Q|}{ R^2 }

Here R is mathematically represented as

R  =  3.265 *10^{-6} +  3.05 *10^{-6}

=>       R  =  6.315 *10^{-6}

So

E_4 =  \frac{ 9*10^{9}  *  |-2.55 *10^{-12} |}{ [ 6.315 *10^{-6} ]^2 }

E_4 =  5.754 *10^ {8} \  V/m

3 0
3 years ago
Other questions:
  • One group of students made a local watershed model. The watershed model was most likely used by the students to
    11·2 answers
  • The mass of the uniform cantilever is 1100 kg. Determine the force on the beam at A. Determine the force on the beam at B. Use C
    13·1 answer
  • Newton’s first law describes the tendency calles
    12·2 answers
  • Which of the following statements about radioactive decay is true?
    6·2 answers
  • The amount of energy the body uses when at rest is referred to as _____.
    8·1 answer
  • Which would be most reliable source for information about the toxity of an industrial chemical
    13·2 answers
  • The drawing shows a person looking at a building on top of which an antenna is mounted. The horizontal distance between the pers
    11·1 answer
  • What is the smallest possible number of products in a decomposition reaction?
    8·1 answer
  • The process of wind blowing sand from one location to another is called
    13·2 answers
  • A marshmallow in a vacuum becomes <br><br> A) larger. <br> B) smaller. <br> C) does not change.
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!