<h2>
Answer: as mass increases, the wave nature of matter is less easy to observe.</h2>
At the beginning of the 20th century the French physicist Louis De Broglie proposed the existence of matter waves, that is to say that <u>all matter has a wave associated with it.</u>
In this sense, the de Broglie wavelength
is given by the following formula:
(1)
Where:
is the Planck constant
is the momentum of the atom, which is given by:
(2)
Where:
is the mass
is the velocity
Substituting (2) in (1):
is inversely proportional to
).
Therefore, if the wavelength decreases the wave nature of matter is less easy to observe.
The other options are incorrect because:
a) as
increases
decreases and the particle nature matter becomes more evident
b) as
decreases
increases and the wave nature matter becomes more evident
c) There is also a relation between the wavelength and the energy
:

So, as energy increases, the particle nature matter becomes more evident and the wave nature of matter becomes harder to observe
Answer:
5.33kg
Explanation:
Given parameters:
Velocity of eagle = 15m/s
Kinetic energy of the eagle = 600J
Unknown:
Mass of the eagle = ?
Solution:
The kinetic energy of any body is the energy due to the motion of a body. There are different forms of kinetic energy some of which are thermal, mechanical, electrical energy.
The formula of kinetic energy is given as;
Kinetic energy =
m v²
where m is the mass, V is the velocity
substitute the parameters in the equation;
600 =
x m x 15²
225m = 1200
m =
= 5.33kg
You'd have an easier time using the equation if you understood where the equation comes from.
The law here ... the major principle to remember, the key, the fundamental truth, the big cookie ... is the fact that momentum is conserved. <em>The total momentum after they join up is the same as the total momentum before they meet.</em>
Momentum of an object is (mass) times (speed).
Now, list all the things you know, before and after the putty meets the ball:
<u>Before:</u><u> </u>There are two objects.
Mass of putty = 3 kg
Speed of putty = 5m/s
Momentum of putty = 3 x 5 = 15 kg-m/s.
Mass of ball = 5 kg
Speed of ball = zero
Momentum of ball = 5 x 0 = zero
Total momentum of both things = 15 kg-m/s
<u>After</u>: There is only one object, because they stuck together.
Mass of (putty+ball) = (3+5) = 8 kg
Speed of (putty+ball) = we don't know; that's what we have to find
Momentum of (putty+ball) = 8 x (speed)
===================================
We know that the momentum after is equal to the momentum before.
8 x (speed) = 15 kg-m/s
Divide each side by 8 :
Speed = 15 / 8 = <em>1.875 m/s </em> after they stick together.