Answer:
f = 347.08 N
Explanation:
The frictional force exerted by the floor on the refrigerator is given as follows:

where,
f = frictional force = ?
μ = coefficient of static friction = 0.58
W = Weight of refrigerator = mg
m = mass of refrigerator = 61 kg
g = acceleration due to gravity = 9.81 m/s²
Therefore,

<u>f = 347.08 N</u>
Answer:
W
Explanation:
= Temperature of the room = 22.0 °C = 22 + 273 = 295 K
= Temperature of the skin = 33.0 °C = 33 + 273 = 306 K
= Surface area = 1.50 m²
= emissivity = 0.97
= Stefan's constant = 5.67 x 10⁻⁸ Wm⁻² K⁻⁴
Rate of heat transfer is given as


W
Answer:
Net force, F = 44.66 N
Explanation:
It is given by,
Initial velocity of the person, u = 0
Final velocity of the person, v = 0.68 m/s
Distance, s = 0.428 m
Combined mass of the person and the kayak, m = 82.7 kg
We need to find the net force acting on the kayak i.e.
F = ma...........(1)
Firstly, we will calculate the value of "a" from third equation of motion as :




Put the value of a in equation (1) as :

F = 44.66 N
So, the net force acting on the kayak is 44.66 N. Hence, this is the required solution.
The formula for energy of motion is KE = .5 x m x v^2
Ke= Kinetic Energy in Joules
m = Mass in Kilograms
v = Velocity in Meters per Second