The most important thing you should remember in order to get how is its linear momentum relative to the surface is that the<span> point on the circumference is moving at w rad/second.
Therefore, here is the solving formulae:
if </span>

you can easily get <span> linear momentum p :
</span>

I'm sure that helps.
The answer is:
Transverse dune
The explanation:
Transverse dune : is abundant barchan dunes It may merge into barchanoid ridges, which then grade into linear .
The transverse dunes is called that because they lie transverse, or across, the wind direction, with the wind blowing perpendicular to the ridge crest.
It is large, very asymmetrical, elongated dune lying at right angles 90° to the prevailing wind direction.
Transverse dunes have a gently sloping windward side and a steeply sloping leeward side.
They general form in areas of sparse vegetation and abundant sand are transverse dunes.
I'm not sure about the magnitude, but the direction of the normal force is upward.
The correct answer is
"As the distance from the earth increases, the gravitational pull on the spaceship would decrease."
In fact, the gravitational force (attractive) exerted by the Earth on the spaceship is given by

where G is the gravitational constant, M the Earth's mass, m the mass of the spaceship and d the distance of the spaceship from the Earth. As we can see from the formula, as the distance d between the spaceship and the Earth increases, the gravitational force F decreases, so answer D) is the correct one.
Answer:
63.57 kg
Explanation:
weight = 140 lbs
Let the mass is m.
1 lbs = 4.45 N
The weight of an object is defined as the force with which our earth attracts the body towards its centre.
Weight is the product of mass of the body and the acceleration due to gravity of that planet.
W = m x g
On earth surface g = 9.8 m/s^2
Now convert lbs in newton
So, 140 lbs = 140 x 4.45 = 623 N
So, m x 9.8 = 623
m = 63.57 kg
Thus, the mass is 63.57 kg.