Answer:
Spiders cannot actually propel their bodies through the water as a swimmer does, but they can use objects to get across the water and some can run across the water.
Explanation:
Answer:
112 m/s², 79.1°
Explanation:
In the x direction, given:
x₀ = 0 m
x = 19,500 cos 32.0° m
v₀ = 1810 cos 20.0° m/s
t = 9.20 s
Find: a
x = x₀ + v₀ t + ½ at²
19,500 cos 32.0° = 0 + (1810 cos 20.0°) (9.20) + ½ a (9.20)²
a = 21.01 m/s²
In the y direction, given:
y₀ = 0 m
y = 19,500 sin 32.0° m
v₀ = 1810 sin 20.0° m/s
t = 9.20 s
Find: a
y = y₀ + v₀ t + ½ at²
19,500 sin 32.0° = 0 + (1810 sin 20.0°) (9.20) + ½ a (9.20)²
a = 109.6 m/s²
The magnitude of the acceleration is:
a² = ax² + ay²
a² = (21.01)² + (109.6)²
a = 112 m/s²
And the direction is:
θ = atan(ay / ax)
θ = atan(109.6 / 21.01)
θ = 79.1°
Answer:
0.384c
Explanation:
To find the speed of the pursuit ship relative to the cruiser you use the following relativistic equation:

u': relative speed
u: speed of the pursuit ship = 0.8c
v: speed of the cruiser = 0.6c
c: speed of light
You replace the values of the parameters to obtain u':

Hence, the relative speed is 0.384c
Frequency refers to how often something happens. Period refers to the time it takes something to happen. Frequency is a rate quantity. Period is a time quantity. Frequency is the cycles/second
Answer:
The magnitude of the acceleration is 1.2 × 10⁴ mi/h²
Explanation:
Hi there!
The acceleration is defined as the change in velocity in a time:
a = Δv / Δt
Where:
a = acceleration.
Δv = change in velocity = final velocity - initial velocity.
Δt = elapsed time.
In this case:
Initial velocity = 60 mi/h
final velocity = 50 mi/h
elapsed time = 3.0 s
Let´s convert the time unit into h:
3.0 s · 1 h /3600 s = 1/1200 h
Now, let´s calculate the acceleration:
a = Δv / Δt
a = (50 mi/h - 60 mi/h) / 1/1200 h
a = -1.2 × 10⁴ mi/h²
The magnitude of the acceleration is 1.2 × 10⁴ mi/h²