Answer:

Explanation:
It is given that,
Initially, the electron is in n = 7 energy level. When it relaxes to a lower energy level, emitting light of 397 nm. We need to find the value of n for the level to which the electron relaxed. It can be calculate using the formula as :


R = Rydberg constant, 

Solving above equation we get the value of final n is,

or

So, it will relax in the n = 2. Hence, this is the required solution.
At critical temperature, the resistivity of the superconductor
B. It suddenly drops to zero
Explanation:
Materials can be classified into three different types depending on their resistance:
- Conductors: these materials have generally low resistance and allow electricity to pass through easily. The resistance of a conductor increases linearly with the temperature
- Insulators: these materials do not allow electricity to pass through - so they have very high resistance
- Semi-conductors: these are materials that are insulators are room temperature, however they becomes conductors when heated. Therefore, the resistance of a semiconductor decreases when the temperature increases
- Superconductors: these are special materials that are normally conductors; however, at very low temperatures (we are talking about temperature very near to 0 K), their resistance becomes suddenly zero.
Therefore, the correct answer is:
B. It suddenly drops to zero
Learn more about current and resistance:
brainly.com/question/4438943
brainly.com/question/10597501
brainly.com/question/12246020
#LearnwithBrainly
The kilogram is the SI unit of mass and it is the almost universally used standard mass unit. The associated SI unit of force and weight is the Newton, with 1 kilogram weighing 9.8 Newtons under standard conditions on the Earth's surface.
Kinetic energy is the energy of mass in motion, the kinetic energy that an object has is because of it's motion.Heavier objects that are moving have more kinetic energy than lighter ones.
Force = mass * acceleration
so, F = 150* 5
F = 750 N