Answer:
1
Step-by-step explanation:
Using the trigonometric identities
tan(90 - x) = cotx , cotx = 
Given
tan1tan2tan3....................... tan87tan88tan89
= tan1tan2tan3............... tan(90-3)tan(90-2)(tan90 - 1)
= tan1tan2tan3.............. cot3cot2cot1
= tan1cot1tan2cot2tan3cot3 ........................
= 1 × 1 × 1 ×....................... × 1
= 1
If your looking for hourly they sold a total of 12 tacos per hour.
If your looking for daily they sold a total of 288 tacos per day.
<h2>
Step-by-step explanation:</h2>
As per the question,
Let a be any positive integer and b = 4.
According to Euclid division lemma , a = 4q + r
where 0 ≤ r < b.
Thus,
r = 0, 1, 2, 3
Since, a is an odd integer, and
The only valid value of r = 1 and 3
So a = 4q + 1 or 4q + 3
<u>Case 1 :-</u> When a = 4q + 1
On squaring both sides, we get
a² = (4q + 1)²
= 16q² + 8q + 1
= 8(2q² + q) + 1
= 8m + 1 , where m = 2q² + q
<u>Case 2 :-</u> when a = 4q + 3
On squaring both sides, we get
a² = (4q + 3)²
= 16q² + 24q + 9
= 8 (2q² + 3q + 1) + 1
= 8m +1, where m = 2q² + 3q +1
Now,
<u>We can see that at every odd values of r, square of a is in the form of 8m +1.</u>
Also we know, a = 4q +1 and 4q +3 are not divisible by 2 means these all numbers are odd numbers.
Hence , it is clear that square of an odd positive is in form of 8m +1
You want to figure out what the variables equal to, all of these are parallelograms meaning opposite sides and angles are equal to each other.
In question 1 start with 3x+10=43, this means that 3x is 10 less than 43 which is 33, 33 divided by 3 is 11 meaning x=11.
Same thing can be done with the sides 124=4(4y-1), start by getting rid of the parentheses with multiplication to get 124=16y-4, this means that 16y is 4 more than 124, so how many times does 16 go into 128? 8 times, so x=11 and y=8
Question 2 can be solved because opposite angles are the same in a parallelogram, so u=66 degrees
You can find the sum of the interial angles with the formula 180(n-2) where n is the number of sides the shape has, a 4 sided shape has a sum of 360 degrees, so if we already have 2 angles that add up to a total of 132 degrees and there are only 2 angles left and both of those 2 angles have to be the same value then it’s as simple as dividing the remainder in half, 360-132=228 so the other 2 angles would each be 114, 114 divided into 3 parts is 38 so u=66 and v=38
Question 3 and 4 can be solved using the same rules used in question 1 and 2, just set the opposite sides equal to each other