Answer:
The simplified form of
is 
Step-by-step explanation:
Given : 
We have to write the simplified form of 
Consider the given expression 
We know 
and 
Thus,

Simplify, we have,

Thus, The simplified form of
is 
Y = x^2 + 10x - 171
y = (x - 9)(x + 19)
x - 9= 0 x + 19 = 0
x = 9 x = -19
Answer B covers all requirements... the factored form is
y= (x + 19)(x - 9)
and the zeros are -19 and 9
Start with 180.
<span>Is 180 divisible by 2? Yes, so write "2" as one of the prime factors, and then work with the quotient, 90. </span>
<span>Is 90 divisible by 2? Yes, so write "2" (again) as another prime factor, then work with the quotient, 45. </span>
<span>Is 45 divisible by 2? No, so try a bigger divisor. </span>
<span>Is 45 divisible by 3? Yes, so write "3" as a prime factor, then work with the quotient, 15 </span>
<span>Is 15 divisible by 3? [Note: no need to revert to "2", because we've already divided out all the 2's] Yes, so write "3" (again) as a prime factor, then work with the quotient, 5. </span>
<span>Is 5 divisible by 3? No, so try a bigger divisor. </span>
Is 5 divisible by 4? No, so try a bigger divisor (actually, we know it can't be divisible by 4 becase it's not divisible by 2)
<span>Is 5 divisible by 5? Yes, so write "5" as a prime factor, then work with the quotient, 1 </span>
<span>Once you end up with a quotient of "1" you're done. </span>
<span>In this case, you should have written down, "2 * 2 * 3 * 3 * 5"</span>
The solution to the given differential equation is yp=−14xcos(2x)
The characteristic equation for this differential equation is:
P(s)=s2+4
The roots of the characteristic equation are:
s=±2i
Therefore, the homogeneous solution is:
yh=c1sin(2x)+c2cos(2x)
Notice that the forcing function has the same angular frequency as the homogeneous solution. In this case, we have resonance. The particular solution will have the form:
yp=Axsin(2x)+Bxcos(2x)
If you take the second derivative of the equation above for yp , and then substitute that result, y′′p , along with equation for yp above, into the left-hand side of the original differential equation, and then simultaneously solve for the values of A and B that make the left-hand side of the differential equation equal to the forcing function on the right-hand side, sin(2x) , you will find:
A=0
B=−14
Therefore,
yp=−14xcos(2x)
For more information about differential equation, visit
brainly.com/question/18760518
a straight line = 180 degrees
so the missing angle is 180 - 130 = 50 degrees