Answer:
a. 2,9x10⁻⁴ M HCl
Explanation:
A solution is considered acidic when its concentration of H⁺ is higher than 1x10⁻⁷. The higher concentration of H⁺ will be the most acidic solution.
a. 2,9x10⁻⁴ M HCl. In water, this solution dissolves as H⁺ and Cl⁻. That means concentration of H⁺ is 2,9x10⁻⁴ M.
b. 4,5x10⁻⁵M HNO₃. In the same way, concentration of H⁺ is 4,5x10⁻⁵M.
c. 1,0x10⁻⁷M NaCl. As this solution doesn't produce H⁺, the solution is not acidic
d. 1,5x10⁻²M KOH. This solution produce OH⁻. That means the solution is basic nor acidic.
Thus, the solution considered the most acidic is a. 2,9x10⁻⁴ M HCl, because has the higher concentration of H⁺.
I hope it helps!
Answer: Gases are complicated. They're full of billions and billions of energetic gas molecules that can collide and possibly interact with each other. Since it's hard to exactly describe a real gas, people created the concept of an Ideal gas as an approximation that helps us model and predict the behavior of real gases. The term ideal gas refers to a hypothetical gas composed of molecules which follow a few rules:
Ideal gas molecules do not attract or repel each other. The only interaction between ideal gas molecules would be an elastic collision upon impact with each other or an elastic collision with the walls of the container. [What is an elastic collision?]
Ideal gas molecules themselves take up no volume. The gas takes up volume since the molecules expand into a large region of space, but the Ideal gas molecules are approximated as point particles that have no volume in and of themselves.
If this sounds too ideal to be true, you're right. There are no gases that are exactly ideal, but there are plenty of gases that are close enough that the concept of an ideal gas is an extremely useful approximation for many situations. In fact, for temperatures near room temperature and pressures near atmospheric pressure, many of the gases we care about are very nearly ideal.
If the pressure of the gas is too large (e.g. hundreds of times larger than atmospheric pressure), or the temperature is too low (e.g.
−
200
C
−200 Cminus, 200, start text, space, C, end text) there can be significant deviations from the ideal gas law.
Explanation:
He knew he was in the desert when he saw the dust blowing and a cactus. /// He was trying to desert the field in which was dangerous.
Answer:
36.693
Explanation:
From the question given, the following were obtained:
Let 35Cl be isotope A and 37Cl be isotope
For isotope A (35Cl),
Mass number = 34.9700
Abundance = 13.85 %
For isotope B (37Cl),
Mass number = 36.9700
Abundance = 86.15 %
Atomic mass =
[( Mass of AxAbundance A)/100] + [(Mass of BxAbundance B)/100]
[(34.97x13.85)/100] + [(36.97x86.15)/100]
= 36.693
Carbon: C
Oxygen: O2
C + O2 —> CO2
Reactants Product