Answer:
b+6
Problem:
If the average of b and c is 8, and d=3b-4, what is the average of c and d in terms of b?
Step-by-step explanation:
We are given (b+c)/2=8 and d=3b-4.
We are asked to find (c+d)/2 in terms of variable, b.
We need to first solve (b+c)/2=8 for c.
Multiply both sides by 2: b+c=16.
Subtract b on both sides: c=16-b
Now let's plug in c=16-b and d=3b-4 into (c+d)/2:
([16-b]+[3b-4])/2
Combine like terms:
(12+2b)/2
Divide top and bottom by 2:
(6+1b)/1
Multiplicative identity property applied:
(6+b)/1
Anything divided by 1 is that anything:
(6+b)
6+b
b+6
Answer:
<em>Each side is 10 meters</em>
Step-by-step explanation:
Because since area is length times width, you would do 10x10 which is 100
Answer:
f = - 
Step-by-step explanation:
Given f varies directly with m then the equation relating them is
f = km ← k is the constant of variation
To find k use the condition f = - 19 when m = 14
- 19 = 14k ( divide both sides by 14 )
-
= k
f = -
m ← equation of variation
When m = 2 , then
f = -
× 2 = - 